Combining Sources of Description for Approximating Music Similarity Ratings

  • Daniel Wolff
  • Tillman Weyde
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7836)

Abstract

In this paper, we compare the effectiveness of basic acoustic features and genre annotations when adapting a music similarity model to user ratings. We use the Metric Learning to Rank algorithm to learn a Mahalanobis metric from comparative similarity ratings in in the MagnaTagATune database. Using common formats for feature data, our approach can easily be transferred to other existing databases. Our results show that genre data allow more effective learning of a metric than simple audio features, but a combination of both feature sets clearly outperforms either individual set.

Keywords

Music Information Retrieval Music Recommendation Computational Modelling Music Similarity Music Perception 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pickens, J.: A survey of feature selection techniques for music information retrieval. In: Proceedings of the 2nd International Symposium on Music Information Retrieval (ISMIR) (2001)Google Scholar
  2. 2.
    Novello, A., Mckinney, M.F., Kohlrausch, A.: Perceptual evaluation of music similarity. In: Proceedings of the 7th International Conference on Music Information Retrieval (ISMIR) (2006)Google Scholar
  3. 3.
    Pampalk, E.: Computational Models of Music Similarity and their Application in Music Information Retrieval. Ph.D. thesis, Vienna University of Technology, Vienna, Austria (2006)Google Scholar
  4. 4.
    Allan, H., Müllensiefen, D., Wiggins, G.: Methodological considerations in studies of musical similarity. In: 8th International Conference on Music Information Retrieval, pp. 473–478 (2007)Google Scholar
  5. 5.
    Turnbull, D.R., Barrington, L., Lanckriet, G., Yazdani, M.: Combining audio content and social context for semantic music discovery. In: SIGIR 2009: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 387–394. ACM, New York (2009)CrossRefGoogle Scholar
  6. 6.
    Barrington, L., Yazdani, M., Turnbull, D., Lanckriet, G.: Combining feature kernels for semantic music retrieval. In: Proceedings of the 9th International Conference on Music Information Retrieval (ISMIR), pp. 614–619 (2008)Google Scholar
  7. 7.
    Mcfee, B., Lanckriet, G.: Metric learning to rank. In: Proceedings of the 27th Annual International Conference on Machine Learning (ICML) (2010)Google Scholar
  8. 8.
    Joachims, T., Finley, T., Yu, C.-N.J.: Cutting-plane training of structural svms. Machine Learning 77, 27–59 (2009)MATHCrossRefGoogle Scholar
  9. 9.
    Schultz, M., Joachims, T.: Learning a distance metric from relative comparisons. In: Advances in Neural Information Processing Systems (NIPS). MIT Press (2003)Google Scholar
  10. 10.
    Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic metric learning. In: Proceedings of the 24th International Conference on Machine Learning (ICML 2007), pp. 209–216. ACM, New York (2007)CrossRefGoogle Scholar
  11. 11.
    Stober, S., Nürnberger, A.: An experimental comparison of similarity adaptation approaches. In: Detyniecki, M., García-Serrano, A., Nürnberger, A., Stober, S. (eds.) AMR 2011. LNCS, vol. 7836, pp. 96–113. Springer, Heidelberg (2013)Google Scholar
  12. 12.
    Law, E., West, K., Mandel, M., Bay, M., Downie, J.S.: Evaluation of algorithms using games: the case of music annotation. In: Proceedings of the 10th International Conference on Music Information Retrieval (ISMIR), pp. 387–392 (October 2009)Google Scholar
  13. 13.
    Jehan, T.: Creating Music by Listening. Ph.D. thesis, Massachusetts Institute of Technology, MA, USA (2005)Google Scholar
  14. 14.
    Wolff, D., Tillman, W.: Adapting metrics for music similarity using comparative judgements. In: Proc. International Symposium on Music Information Retrieval (2011) (accepted for publication)Google Scholar
  15. 15.
    Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured and interdependent output variables. Journal of Machine Learning Research (JMLR) 6, 1453–1484 (2005)MathSciNetMATHGoogle Scholar
  16. 16.
    McFee, B., Barrington, L., Lanckriet, G.: Learning similarity from collaborative filters. In: Proceedings of the International Society of Music Information Retrieval Conference, pp. 345–350 (2010)Google Scholar
  17. 17.
    McFee, B., Lanckriet, G.: Heterogeneous embedding for subjective artist similarity. In: Proc. International Symposium on Music Information Retrieval, pp. 513–518 (October 2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Daniel Wolff
    • 1
  • Tillman Weyde
    • 1
  1. 1.Department of ComputingCity University LondonLondonUK

Personalised recommendations