Learning-Based Interactive Retrieval in Large-Scale Multimedia Collections

  • Hisham Mohamed
  • Marc von Wyl
  • Eric Bruno
  • Stéphane Marchand-Maillet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7836)


Indexing web-scale multimedia is only possible by distributing storage and computing efforts. Existing large-scale content-based indexing services mostly do not offer interactive relevance feedback. Here, we detail the construction of our Cross-Modal Search Engine (CMSE) implementing a query-by-example search strategy with relevance feedback and distributed over a cluster of 20 Dual core machines using MPI. We present the performance gain in terms of interactivity (search time) using a part of the Image-Net collection containing more than one million images as base example.


Query Processing Message Passing Interface Memory Model Relevance Feedback Master Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Badue, C., Baeza-yates, R., Ribeiro-neto, B., Ziviani, N.: Distributed query processing using partitioned inverted files. In: Proc. of the 9th String Processing and Information Retrieval Symposium (SPIRE), pp. 10–20. IEEE CS Press (2001)Google Scholar
  2. 2.
    Batko, M., Falchi, F., Lucchese, C., Novak, D., Perego, R., Rabitti, F., Sedmidubsky, J., Zezula, P.: Building a web-scale image similarity search system. Multimedia Tools and Applications 47(3), 599–629 (2010)CrossRefGoogle Scholar
  3. 3.
    Bruno, E., Kludas, J., Marchand-Maillet, S.: Combining multimodal preferences for multimedia information retrieval. In: Proceedings of the International Workshop on Multimedia Information Retrieval (2007)Google Scholar
  4. 4.
    Bruno, E., Marchand-Maillet, S.: Multimodal preference aggregation for multimedia information retrieval. Journal of Multimedia 4(5), 321–329 (2009)CrossRefGoogle Scholar
  5. 5.
    Bruno, E., Moënne-Loccoz, N., Marchand-Maillet, S.: Design of multimodal dissimilarity spaces for retrieval of multimedia documents. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(9), 1520–1533 (2008)CrossRefGoogle Scholar
  6. 6.
    Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51, 107–113 (2008)CrossRefGoogle Scholar
  7. 7.
    Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: IEEE Computer Vision and Pattern Recognition (CVPR) (2009)Google Scholar
  8. 8.
    Faloutsos, C., Lin, K.-I.: Fastmap: a fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets. SIGMOD Rec. 24(2), 163–174 (1995)CrossRefGoogle Scholar
  9. 9.
    Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for combining preferences. Journal of Machine Learning Research 4, 933–969 (2003)MathSciNetGoogle Scholar
  10. 10.
    Heinz, S., Zobel, J.: Efficient single-pass index construction for text databases. J. Am. Soc. Inf. Sci. Technol. 54, 713–729 (2003)CrossRefGoogle Scholar
  11. 11.
    Schmid, C., Jégou, H., Douze, M.: Improving bag-of-features for large scale image search. International Journal of Computer Vision 87(3) (2010)Google Scholar
  12. 12.
    McCreadie, R., Macdonald, C., Ounis, I.: MapReduce indexing strategies: Studying scalability and efficiency. Information Processing and Management (2011)Google Scholar
  13. 13.
    Pekalska, E., Paclík, P., Duin, R.: A generalized kernel approach to dissimilarity-based classification. Journal of Machine Learning Research 2, 175–211 (2001)Google Scholar
  14. 14.
    Squyres, J.M.: Definitions and fundamentals – the message passing interface (MPI). Cluster World Magazine, MPI Mechanic Column 1(1), 26–29 (2003)Google Scholar
  15. 15.
    Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Compressing and Indexing Documents and Images, 2nd edn. Morgan Kaufmann, San Francisco (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hisham Mohamed
    • 1
  • Marc von Wyl
    • 1
  • Eric Bruno
    • 2
  • Stéphane Marchand-Maillet
    • 1
  1. 1.Viper Group - Department of Computer ScienceUniversity of GenevaSwitzerland
  2. 2.Data Mining and Knowledge Discovery - Corporate R&D DivisionFirmenich SASwitzerland

Personalised recommendations