Skip to main content

Generalized-Positioning for Mixed-Frequency of Mixed-GNSS and Its Preliminary Applications

  • Conference paper
  • First Online:
China Satellite Navigation Conference (CSNC) 2013 Proceedings

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 244))

Abstract

Modernized GPS and GLONASS, together with new GNSS systems, BeiDou and Galileo, offer code and phase ranging signals in three or more carriers. Traditionally, dual-frequency code and/or phase GPS measurements are linearly combined to eliminate effects of ionosphere delays in various positioning and analysis. This typical treatment method has imitations in processing signals at three or more frequencies from more than one system and can be hardly adapted itself to cope with the booming of various receivers with a broad variety of singles. In this contribution, a generalized-positioning model that the navigation system independent and the carrier number unrelated is promoted, which is suitable for both single- and multi-sites data processing. For the synchronization of different signals, uncalibrated signal delays (USD) are more generally defined to compensate the signal specific offsets in code and phase signals respectively. In addition, the ionospheric delays are included in the parameterization with an elaborate consideration. Based on the analysis of the algebraic structures, this generalized-positioning model is further refined with a set of proper constrains to regularize the datum deficiency of the observation equation system. With this new model, uncalibrated signal delays (USD) and ionospheric delays are derived for both GPS and BeiDou with a large dada set. Numerical results demonstrate that, with a limited number of stations, the uncalibrated code delays (UCD) are determinate to a precision of about 0.1 ns for GPS and 0.4 ns for BeiDou signals, while the uncalibrated phase delays (UPD) for L1 and L2 are generated with 37 stations evenly distributed in China for GPS with a consistency of about 0.3 cycle. Extra experiments concerning the performance of this novel model in point positioning with mixed-frequencies of mixed-constellations is analyzed, in which the USD parameters are fixed with our generated values. The results are evaluated in terms of both positioning accuracy and convergence time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang YX (2010) Prograss, contribution and challenges of compass/Beidou satellite navigation system. Acta Geodaetica et Cartographica Sinica 39(1):1

    Google Scholar 

  2. Hauschild A, Montenbruck O, Sleewaegen JM, Huisman L, Teunissen PJG (2012) Characterization of compass M-1 signals. GPS Solutions 16(1):117–126

    Article  Google Scholar 

  3. Montenbruck O, Hauschild A, Steigenberger P, Hugentobler U, Riley S (2010) A COMPASS for Asia: first experience with the BeiDou-2 regional navigation system

    Google Scholar 

  4. Montenbruck O, Hauschild A, Steigenberger P, Hugentobler U, Teunissen PJG, Nakamura S (2012) Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solutions 1–12. doi:10.1007/s10291-012-0272-x

  5. Yang YX, Li JL, Xu JY (2011) Contribution of the Compass satellite navigation system to global PNT users. Chin Sci Bull 56(26):2813–2819. doi:10.1007/s11434-011-4627-4

    Article  Google Scholar 

  6. Shi C, Zhao QL, Hu Z, Liu J (2012) Precise relative positioning using real tracking data from COMPASS GEO and IGSO satellites. GPS Solutions 1–17. doi:10.1007/s10291-012-0264-x

  7. Shi C, Zhao Q, Li M, Tang W, Hu Z, Lou Y, Zhang H, Niu X, Liu J (2012) Precise orbit determination of Beidou satellites with precise positioning. SCIENCE CHINA Earth Sciences 55(7):1079–1086. doi:10.1007/s11430-012-4446-8

    Article  Google Scholar 

  8. Bisnath S, Gao Y (2008) Current state of precise point positioning and future prospects and limitations. Observing our Changing Earth 133:615–623

    Article  Google Scholar 

  9. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017

    Article  Google Scholar 

  10. Kouba J, Héroux P (2001) Precise point positioning using IGS orbit and clock products. GPS solutions 5(2):12–28

    Article  Google Scholar 

  11. Shi C, Lou Y, Song W, Gu S, Geng C, Yi W, Liu Y (2011) A wide area real-time differential GPS prototype system in China and result analysis. Surv Rev 43(322):351–360. doi:10.1179/003962611X13055561708623

    Article  Google Scholar 

  12. Liu J, Ge M (2003) PANDA software and its preliminary result of positioning and orbit determination. Wuhan Univ J Nat Sci 8(2):603–609. doi:10.1007/BF02899825

    Article  Google Scholar 

  13. Shi C, Zhao Q, Geng J, Lou Y, Ge M, Liu J (2008) Recent development of PANDA software in GNSS data processing. In: Li D, Gong J, Wu H (eds) Proceedings of SPIE, the international society for optical engineering, SPIE, vol 7285, Bellingham, WA, p 72851S. doi:10.1117/12.816261

  14. Steigenberger P, Hauschild A, Montenbruck O, Hugentobler U (2012) Performance analysis of compass orbit and clock determination and compass-only PPP. IGS Workshop

    Google Scholar 

  15. Gao Y, Zhang Y, Chen K (2006) Development of a real-time single-frequency precise point positioning system and test results. In: Proceedings of the 19th international technical meeting of the satellite division of the institute of navigation, pp 2297–2303

    Google Scholar 

  16. Le AQ, Tiberius C (2007) Single-frequency precise point positioning with optimal filtering. GPS Solutions 11(1):61–69. doi:10.1007/s10291-006-0033-9

    Article  Google Scholar 

  17. Øvstedal O (2002) Absolute positioning with single-frequency GPS receivers. GPS Solutions 5(4):33–44. doi:10.1007/PL00012910

    Article  Google Scholar 

  18. Shi C, Gu S, Lou Y, Ge M (2012) An improved approach to model ionospheric delays for single-frequency precise point positioning. Adv Space Res 49(12):1698–1708. doi:10.1016/j.asr.2012.03.016

    Article  Google Scholar 

  19. Schönemann E, Becker M, Springer T (2011) A new approach for GNSS analysis in a multi-GNSS and multi-signal environment. J Geodetic Sci 1(3):204–214. doi:10.2478/v10156-010-0023-2

    Google Scholar 

  20. Li X, Ge M, Zhang H, Nischan T, Wickert J (2012) The GFZ real-time GNSS precise positioning service system and its adaption for COMPASS. Adv Space Res. doi:10.1016/j.asr.2012.06.025

    Google Scholar 

  21. Welsch W (1979) A review of the adjustment of free networks. Surv Rev 25(194):167–180

    Article  Google Scholar 

  22. Sillard P, Boucher C (2001) A review of algebraic constraints in terrestrial reference frame datum definition. J Geodesy 75(2):63–73

    Article  MATH  Google Scholar 

  23. ARINC Research Corporation (1997) Interfaca control document, Navstar GPS space segment/Navigation user interfaces, ICD-GPS-200, Revision C(IRN-200C-002)

    Google Scholar 

  24. Schaer S, Dach R (2010) Biases in GNSS analysis. In: IGS Workshop, Newcastle, England

    Google Scholar 

  25. Wilson B, Yinger C, Feess C, Shank C (1999) New and improved–the broadcast interfrequency biases. GPS World 10(9):56–66

    Google Scholar 

  26. Rao CR, Mitra SK (1971) Generalized inverse of a matrix and its applications. Wiley, New York

    Google Scholar 

  27. Blaha G (1982) Free networks: minimum norm solution as obtained by the inner adjustment constraint method. J Geodesy 56(3):209–219

    MathSciNet  Google Scholar 

  28. Baarda W (1981) S-transformations and criterion matrices. Netherlands Geodetic Commission, Dalft

    Google Scholar 

  29. Grafarend E, Schaffrin B (1974) Unbiased free net adjustment. Surv Rev 22(171):200–218

    Article  Google Scholar 

  30. Dong DN, Bock Y (1989) Global positioning system network analysis with phase ambiguity resolution applied to crustal deformation studies in California. J Geophys Res 94(B4):3949–3966

    Article  Google Scholar 

  31. Blewitt G (1989) Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines up to 2000 km. J Geophys Res 94(B8):10187–10203

    Article  Google Scholar 

  32. De Jonge PJ (1998) A processing strategy of the application of the GPS network. Delft University of Technology. Netherlands Geodetic Commission, Delft

    Google Scholar 

  33. Ge M, Gendt G, Rothacher M, Shi C, Liu J (2008) Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J Geodesy 82(7):389–399

    Article  Google Scholar 

  34. Laurichesse D, Mercier F, Berthias JP, Broca P, Cerri L (2009) Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navigation 56(2):135–149

    Google Scholar 

  35. Boehm J, Niell A, Tregoning P, Schuh H (2006) Global mapping function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33(7):L07304. doi:10.1029/2005GL025546

    Article  Google Scholar 

  36. Tralli DM, Lichten SM (1990) Stochastic estimation of tropospheric path delays in global positioning system geodetic measurements. J Geodesy 64(2):127–159. doi:10.1007/BF02520642

    Google Scholar 

  37. Mannucci AJ, Wilson BD, Yuan DN, Ho CH, Lindqwister UJ, Runge TF (1998) A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Science 33(3):565–582. doi:10.1029/97RS02707

    Article  Google Scholar 

  38. Schaer S (1999) Mapping and predicting the Earth’s ionosphere using the global positioning system. Ph.D. Thesis, University of Bern, Switzerland

    Google Scholar 

  39. Yuan Y, Ou J (2004) A generalized trigonometric series function model for determining ionospheric delay. Prog Nat Sci 14(11):1010–1014

    Article  Google Scholar 

  40. Blanch J (2003) Using Kriging to bound satellite ranging errors due to the ionosphere. Ph.D. Thesis, Stanford University, U.S.A.

    Google Scholar 

  41. Cressie N (1993) Statistics for spatial data. Wiley, New York, p 928

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengfeng Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gu, S., Shi, C., Lou, Y., Feng, Y., Ge, M. (2013). Generalized-Positioning for Mixed-Frequency of Mixed-GNSS and Its Preliminary Applications. In: Sun, J., Jiao, W., Wu, H., Shi, C. (eds) China Satellite Navigation Conference (CSNC) 2013 Proceedings. Lecture Notes in Electrical Engineering, vol 244. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37404-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37404-3_35

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37403-6

  • Online ISBN: 978-3-642-37404-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics