Power Distribution Control Using Multi-Agent Systems

  • Munir Merdan
  • Alexander Prostejovsky
  • Ingo Hegny
  • Wilfried Lepuschitz
  • Filip Andrén
  • Thomas Strasser
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 480)

Abstract

Availability and functionality of reliable and efficient electric energy systems are prerequisites for economic and social welfare. In the last decades, more and more stress is put on the electricity supply and infrastructure increasing also minimal electricity networks requirements. Multi-agent systems represent a promising approach able to realize and implement the above described functionalities and services in a power distribution network. In this chapter an automation agent approach and the related system architecture for handling such dynamic networks is presented and discussed. The agents provide monitoring and diagnostics abilities required for the robust functioning of components in the distributed environment. Furthermore, the system also provides means to coordinate energy generation and consumption, keep nodal voltages within predefined bounds and avoid overstressing of equipment. The presented approach is currently in the development phase and will be tested in the AIT power distribution laboratory.

References

  1. 1.
    A. Molderink, V. Bakker, M.G.C. Bosman, J.L. Hurink, G.J.M. Smit, Management and control of domestic smart grid technology. smart grid, IEEE Trans. 1(2), 109–119. doi: 10.1109/TSG.2010.2055904
  2. 2.
    European Smart Grids Technology Platform: Vision and Strategy for Europe’s Electricity Networks of the Future, European Commission, ISBN 92-79-0414-5 (2006), 44 Google Scholar
  3. 3.
    S.D.J. McArthur, E.M. Davidson, V.M. Catterson, A.L. Dimeas, N.D. Hatziargyriou, F. Ponci, T. Funabashi, Multi-agent systems for power engineering applications—part I: concepts, approaches, and technical challenges. Power Syst., IEEE Trans. 22(4), 1743–1752 (2007)CrossRefGoogle Scholar
  4. 4.
    J. Lagorse, D. Paire, A. Miraoui, A multi-agent system for energy management of distributed power sources. Renew. Energy 35(1), 174–182 (2010)CrossRefGoogle Scholar
  5. 5.
    K. Nareshkumar, M.A. Choudhry, J. Lai, A. Feliachi, in Application of Multi-agents for Fault Detection and Reconfiguration of Power Distribution Systems. Power and energy society general meeting, 2009. PES ‘09. IEEE, 1–8. doi: 10.1109/PES.2009.5276005
  6. 6.
    P. Zhang, F. Li, N. Bhatt, Next-generation monitoring, analysis, and control for the future smart control center. Smart Grid, IEEE Trans. 1(2), 186–192 (2010). doi: 10.1109/TSG.2010.2053855 CrossRefGoogle Scholar
  7. 7.
    J.M. Solanki, S. Khushalani, N.N. Schulz, A multi-agent solution to distribution systems restoration. IEEE Trans. Power Syst. 22(3), 1026–1034 (2007)CrossRefGoogle Scholar
  8. 8.
    N. Jennings, S. Bussmann, Agent-based control systems: Why are they suited to engineering complex systems? Control Syst. Magazine, IEEE 23(3), 61–73 (2003)Google Scholar
  9. 9.
    M. Wolter, S. Brenner, T. Isermann, L. Hofmann, in Application of Adaptive Agents in Decentralized Energy Management Systems for the Purpose of Voltage Stability in Distribution Grids. North American power symposium (NAPS), 2009. North American power symposium (NAPS), pp. 1–5 (2009)Google Scholar
  10. 10.
    J. Jung, C.C. Liu, in Multi-agent System Technologies and an Application for Power System Vulnerability. IEEE Power Engineering Society General Meeting (2003)Google Scholar
  11. 11.
    L. Cristaldi, A. Monti, R. Ottoboni, F. Ponci, in Multiagent Based Power Systems Monitoring Platform: A Prototype. Power Tech Conference Proceedings, 2003 IEEE Bologna, vol. 2, June 2003, pp. 5Google Scholar
  12. 12.
    P. Vytelingum, T. Voice, S.D. Ramchurn, A. Rogers, N.R. Jennings, in Intelligent Agents for the Smart Grid. Proceedings of AAMAS, pp. 1649–1650, 2010Google Scholar
  13. 13.
    J. Hossack, S.D.J. McArthur, J.R. Mcdonald, J. Stokoe, T. Cumming, in A Multi-agent Approach to Power System Disturbance Diagnosis. Proceedings of international conference on power system management and control, April 2002, vol. 488, pp. 317–322Google Scholar
  14. 14.
    L. Liu, K.P. Logan, D.A. Cartes, S.K. Srivastava, Fault detection, diagnostics and prognostics: software agent solutions. IEEE Trans. Veh. Technol. 56(4), 1613–1622 (2007)CrossRefGoogle Scholar
  15. 15.
    S. Chouhan, W. Hui, H.J. Lai, A. Feliachi, M.A. Choudhry, in Intelligent Reconfiguration of Smart Distribution Network using Multi-agent Technology. Power and energy society general meeting, 2009. PES ‘09. IEEE, pp. 1–6, 26–30 July 2009Google Scholar
  16. 16.
    S. McArthur, E. Davidson, V. Catterson, A. Dimeas, N. Hatziargyriou, F. Ponci, T. Funabashi, Multi-agent systems for power engineering applications—part II: technologies, standards, and tools for building multi-agent systems. Power Systems, IEEE Trans. 22, 1753–1759 (2007)CrossRefGoogle Scholar
  17. 17.
    M. Merdan, M. Vallee, W. Lepuschitz, A. Zoitl, Monitoring and diagnostics of industrial systems using automation agents. Int. J. Prod. Res. 49(5), 1497 (2011)CrossRefGoogle Scholar
  18. 18.
    M. Vallee, M. Merdan, W. Lepuschitz, G. Koppensteiner, Decentralized reconfiguration of a flexible transportation system. Ind. Inf. IEEE Trans. 7(3), 505–516 (2011). doi: 10.1109/TII.2011.2158839 CrossRefGoogle Scholar
  19. 19.
    W. Lepuschitz, A. Zoitl, M. Vallee, M. Merdan, Towards self-reconfiguration of manufacturing systems using automation agents. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 41(1), 52–69 (2011)CrossRefGoogle Scholar
  20. 20.
    N. Hatziargyriou, Microgrids—the key to unlock distributed energy resources? IEEE Power Energy Mag. 6(3) (2008)Google Scholar
  21. 21.
    A. Prostejovsky, W. Lepuschitz, T. Strasser, M. Merdan, in Autonomous Service Restoration in Smart Distribution Grids using Multi-agent Systems. electrical and computer engineering (CCECE), IEEE Canadian Conference on May 2012, pp. 1–5Google Scholar
  22. 22.
    M. Vallee, H. Kaindl, M. Merdan, W. Lepuschitz, E. Arnautovic, P. Vrba, An automation agent architecture with a reflective world model in manufacturing systems, IEEE Int. Conf. Syst., Man, Cybern. (SMC’09), (San Antonio, Texas, USA, 2009), pp. 305–310Google Scholar
  23. 23.
    T. Strasser, M. Rooker, I. Hegny, M. Wenger, A. Zoitl, L. Ferrarini, A. Dede, M. Colla, in A Research Roadmap for Model-Driven Design of Embedded Systems for Automation Components. Proceedings of the 7th IEEE international conference on industrial informatics (INDIN 2009), pp. 564–569, June 2009Google Scholar
  24. 24.
    I. Hegny, M. Wenger, A. Zoitl, in IEC 61499 Based Simulation Framework for Model-Driven Production Systems Development. Proceedings of the 2010 IEEE conference on emerging technologies and factory automation (ETFA), Sept 2010Google Scholar
  25. 25.
    H. Schmidt, N. Ida, N. Kagan, Fast reconfiguration of distribution systems considering loss minimization, IEEE Trans. Power Syst., 20(3), Aug 2005Google Scholar
  26. 26.
    I. Zabet, M. Montazeri, in Decentralized Control and Management Systems for Power Industry via Multiagent Systems Technology. 4th International power engineering and optimization conference (PEOCO), 2010, pp. 549–556Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Munir Merdan
    • 1
  • Alexander Prostejovsky
    • 1
  • Ingo Hegny
    • 1
  • Wilfried Lepuschitz
    • 1
  • Filip Andrén
    • 2
  • Thomas Strasser
    • 2
  1. 1.Vienna University of Technology, Automation and Control InstituteViennaAustria
  2. 2.Energy DepartmentAIT Austrian Institute of TechnologyViennaAustria

Personalised recommendations