Advertisement

SemProM pp 127-148 | Cite as

The SemProM Data Format

  • Sven HornEmail author
  • Alexander Claus
  • Jörg Neidig
  • Bruno Kiesel
  • Thorbjørn Hansen
  • Jens Haupert
Part of the Cognitive Technologies book series (COGTECH)

Abstract

Based on recently emerged technologies such as Radio Frequency Identification (RFID), 2D matrix codes, and embedded devices, products can be uniquely identified and tracked throughout the entire lifecycle. Data acquired along a product lifecycle can be associated to single items and unique instances of a product. Today, significant parts of these data can be stored directly on the item itself.

Within the research in the Innovation Alliance “Digital Product Memory” (DPM), a container format for such a product memory was developed. It enables usage of the same storage media for different block data (multipart) and provides a lean metadata structure for current technologies. Relations in the production process and supply chains, as well as environmental influences, become retraceable. The producer is supported and the consumer better informed about the product.

The SemProM container format focuses mainly on a binary format for resource-limited memory technologies, but the concept is in principle usable as an XML representation in upper layers or API definitions, too.

Keywords

Data Block Object Memory Manufacture Execution System Electronic Product Code Payload Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. T. Berners-Lee, R. Fielding, U.C. Irvine, L. Masinter, Uniform resource identifiers (URI): generic syntax. Available online (March 5th 2004), August 1998. http://www.ietf.org/rfc/rfc2396.txt
  2. D.L. Brock, The electronic product code (EPC). A naming scheme for physical objects. Technical report, MIT-AUTOIDWH-002, Cambridge, USA, January 2001. http://www.autoidlabs.org/uploads/media/MIT-AUTOID-WH-002.pdf
  3. B. Fabian, Secure name services for the Internet of Things. PhD thesis, Wirtschaftswissenschaftliche Fakultät, HU-Berlin, Germany, September 2008. http://edoc.hu-berlin.de/docviews/abstract.php?id=29312
  4. K. Främling, J. Holmström, T. Ala-Risku, M. Kärkkäinen, Product agents for handling information about physical objects. Technical Report TKO-B 153/03, Helsinki University of Technology, Department of Computer Science and Engineering, Laboratory of Information Processing Science B, Helsinki, Finland, November 2003. http://www.cs.hut.fi/~framling/Publications/B153.pdf
  5. K. Främling, M. Harrison, J. Brusey, Globally unique product identifiers—requirements and solutions to product lifecycle management, in Proceedings of the 12th IFAC Symposium on Information Control Problems in Manufacturing, France, vol. 1 (2006), pp. 855–860. http://www.cs.hut.fi/~framling/Publications/FramlingHarrisonBrusey_INCOM06.pdf Google Scholar
  6. S. Horn, B. Schennerlein, A. Pförtner, T. Hansen, Storage, organization, retrieval: the SemProM middleware, in SemProM—Foundations of Semantic Product Memories for the Internet of Things, ed. by W. Wahlster. Cognitive Technologies (Springer, Berlin, 2013) Google Scholar
  7. D. Kandel, Neuer Branchenstandard für die Automobilindustrie. RFID Blick 9, 10–11 (2010). http://www.autoran.de/fileadmin/autoran.de/data/Dokumente/RFID_im_Blick_201010.pdf Google Scholar
  8. S. Kankonsae, P. Choeysuwan , S. Choomchuay, A 2-stage compression for RFID tags data, in 2010 International Workshop on Information Communication Technology (ICT-2010), Bangkok, Thailand, August (2010). http://www.kmitl.ac.th/~kchsomsa/somsak/papers/ict_2010_1.pdf Google Scholar
  9. B. Kiesel, J. Neidig, The block interface: accessing digital product memories, in SemProM—Foundations of Semantic Product Memories for the Internet of Things, ed. by W. Wahlster. Cognitive Technologies (Springer, Berlin, 2013) Google Scholar
  10. A. Kröner, J. Haupert, M. Seißler, B. Kiesel, B. Schennerlein, S. Horn, D. Schreiber, R. Barthel, Object Memory Modeling W3C Incubator Group Report. Technical report, Worldwide Web Consortium, 2011. http://www.w3.org/2005/Incubator/omm/XGR-omm/
  11. S. Liu, F. Wang, P. Liu, A temporal RFID data model for querying physical objects. Technical Report TR-88, A TIMECENTER Technical Report, February 2007. http://timecenter.cs.aau.dk/TimeCenterPublications/TR-88.pdf
  12. G.G. Meyer, K. Främling, J. Holmström, Intelligent products: a survey. Comput. Ind. 60, 137–148 (2009) CrossRefGoogle Scholar
  13. J. Neidig, Hardware requirements for digital product memories, in SemProM—Foundations of Semantic Product Memories for the Internet of Things, ed. by W. Wahlster. Cognitive Technologies (Springer, Berlin, 2013) Google Scholar
  14. Tag Data and Translation Standard Work Group, EPCTM Tag Data Standards Version 1.4. Technical report, EPCglobal Inc., June 2008. http://www.epcglobalinc.org/standards/tds/tds_1_4-standard-20080611.pdf
  15. The Internet Society, The Unicode Standard Version 5.0 (UTF8: see one of RFC 3629/std 63, ISO/IEC 10646:2003 Annex D), Network Working Group, Alis Technologies, 2003 Google Scholar
  16. W. Wahlster (ed.), SemProM—Foundations of Semantic Product Memories for the Internet of Things. Cognitive Technologies (Springer, Berlin, 2013) Google Scholar
  17. J.-Y. Yoo, Y.-J. Park, An intelligent middleware platform and framework for RFID reverse logistics. Int. J. Future Gener. Commun. Netw. December, 75–82 (2008). http://www.docstoc.com/docs/40485115/An-Intelligent-Middleware-Platform-and-Framework-for-RFID-Reverse Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sven Horn
    • 1
    Email author
  • Alexander Claus
    • 1
  • Jörg Neidig
    • 2
  • Bruno Kiesel
    • 2
  • Thorbjørn Hansen
    • 3
    • 4
  • Jens Haupert
    • 5
  1. 1.SAP ResearchSAP AGDresdenGermany
  2. 2.Sector IndustrySiemens AGNurembergGermany
  3. 3.Siemens AGMunichGermany
  4. 4.Johanna-Hofer-Weg 4MunichGermany
  5. 5.DFKI GmbH, German Research Center for Artificial IntelligenceSaarbrückenGermany

Personalised recommendations