Advertisement

SemProM pp 223-242 | Cite as

Supporting Interaction with Digital Product Memories

  • Alexander KrönerEmail author
  • Jens Haupert
  • José de Gea Fernández
  • Rainer Steffen
  • Christian Kleegrewe
  • Martin Schneider
Part of the Cognitive Technologies book series (COGTECH)

Abstract

On its way along the supply chain, a product may be exposed to physical actors with very different requirements for the interaction with a DPM. For instance, while human users may precisely perceive a given product’s visual shape, they have to rely on a “mediating device” in order to create and apply content stored in a DPM. In contrast, robots may directly access the data stored in a DPM, but may require specific data in order to get a better “understanding” of a physical interaction task. Finally, DPMs may have to interact with other DPMs in their surroundings, for instance, in order to delegate communication tasks. This chapter reviews components of the access layer, a part of the SemProM interaction architecture which has been introduced to support tasks particularly common to the interaction of humans, robots, and DPMs with DPMs.

Keywords

Personal Data Expiration Date Master Node Distribute Hash Table Personal Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. J. Bender, D. Kügler, M. Margraf, I. Naumann, Sicherheitsmechanismen für kontaktlose Chips im deutschen elektronischen Personalausweis – Ein Überblick über Sicherheitsmerkmale, Risiken, und Gegenmassnahmen, in DuD – Datenschutz und Datensicherheit, vol. 3 (Vieweg, Wiesbaden, 2008), pp. 173–177 Google Scholar
  2. P.J. Besl, R. Jain, Three-dimensional object recognition. ACM Comput. Surv. 17(1), 75–145 (1985). http://dblp.uni-trier.de/db/journals/csur/csur17.html#BeslJ85 CrossRefGoogle Scholar
  3. A. Blocher, SemProM—dissemination and impact, in SemProM—Foundations of Semantic Product Memories for the Internet of Things, ed. by W. Wahlster. Cognitive Technologies (Springer, Berlin, 2013) Google Scholar
  4. B. Brandherm, J. Haupert, A. Kröner, M. Schmitz, F. Lehmann, Roles and rights management concept with identification by electronic identity card, in Proceedings of the 8th Annual IEEE International Conference on Pervasive Computing and Communications (PerCom 2010), Mannheim, Germany (IEEE Computer Society, Washington, 2010), pp. 768–771 Google Scholar
  5. B. Brandherm, M. Schmitz, R. Neßelrath, F. Lehmann, A SemProM use case: health care and compliance, in SemProM—Foundations of Semantic Product Memories for the Internet of Things, ed. by W. Wahlster. Cognitive Technologies (Springer, Berlin, 2013) Google Scholar
  6. A. Collet, D. Berenson, S.S. Srinivasa, D. Ferguson, Object recognition and full pose registration from a single image for robotic manipulation, in ICRA (IEEE, New York, 2009), pp. 48–55. http://dblp.uni-trier.de/db/conf/icra/icra2009.html#ColletBSF09 Google Scholar
  7. T. Deyle, H. Nguyen, M. Reynolds, C.C. Kemp, RFID-guided robots for pervasive automation. IEEE Pervasive Comput. 9(2), 37–45 (2010). http://dblp.uni-trier.de/db/journals/pervasive/pervasive9.html#DeyleNRK10 CrossRefGoogle Scholar
  8. M. Eich, M.D.F. Kirchner, Semantic labeling: classification of 3D entities based on spatial feature descriptors, in Best Practice Algorithms in 3D Perception and Modeling for Mobile Manipulation. IEEE International Conference on Robotics and Automation (ICRA-10), Anchorage, United States, May 3 (2010). http://www.dfki.de/web/forschung/publikationen/renameFileForDownload?filename=100414_SemanticLabelingClassificationof3DEntitiesBasedonSpatialFeatureDescriptors_ICRA_Eich.pdf&file_id=uploads_652 Google Scholar
  9. D. Fitton, F. Kawsar, G. Kortuem, Exploring the design of a memory model for smart objects, in Workshops Proceedings of the 5th International Conference on Intelligent Environments, ed. by M. Schneider, A. Kröner, J.C.E. Alvarado, A.G. Higuera, J.C. Augusto, D.J. Cook, V. Ikonen, P. Čech, P. Mikulecký, A. Kameas, V. Callaghan. Ambient Intelligence and Smart Environments, vol. 4 (IOS Press, Amsterdam, 2009), pp. 33–38. doi: 10.3233/978-1-60750-056-8-33. http://dblp.uni-trier.de/db/conf/intenv/intenv2009w.html#FittonKK09 Google Scholar
  10. J. Haupert, M. Schneider, The object memory server for semantic product memories, in SemProM—Foundations of Semantic Product Memories for the Internet of Things, ed. by W. Wahlster. Cognitive Technologies (Springer, Berlin, 2013) Google Scholar
  11. G. Kahl, C. Magerkurth, J. Preißinger, P. Gebhard, B. Weyl, Enhancement of consumer support in retail scenarios by utilization of semantic product memories, in SemProM—Foundations of Semantic Product Memories for the Internet of Things, ed. by W. Wahlster. Cognitive Technologies (Springer, Berlin, 2013) Google Scholar
  12. B. Kiesel, J. Neidig, The block interface: accessing digital product memories, in SemProM—Foundations of Semantic Product Memories for the Internet of Things, ed. by W. Wahlster. Cognitive Technologies (Springer, Berlin, 2013) Google Scholar
  13. T. Kuflik, K. Poteriaykina, Integrating user modeling server with user modeling mediator on a personal device, in Proceedings of the 7th International Workshop on Ubiquitous User Modelling (UbiqUM2009), ed. by S. Berkovsky, F. Carmagnola, D. Heckmann, T. Kuflik (2009), pp. 11–15. http://grapple.ai.cs.uni-sb.de/uploads/media/UbiqUM2009-Proceedings.pdf CrossRefGoogle Scholar
  14. J. Lemburg, D. Mronga, A. Aggarwal, J. de Gea Fernández, M. Ronthaler, F. Kirchner, A robotic platform for building and exploiting digital product memories, in SemProM—Foundations of Semantic Product Memories for the Internet of Things, ed. by W. Wahlster. Cognitive Technologies (Springer, Berlin, 2013) Google Scholar
  15. T.-M. Lin, Power consumption issues for WLAN systems, 2007. http://mnet.cs.nthu.edu.tw/paper/tmlin/051209.pdf
  16. F. Lu, E.E. Milios, Robot pose estimation in unknown environments by matching 2D range scans. J. Intell. Robot. Syst. 18(3), 249–275 (1997). http://dblp.uni-trier.de/db/journals/jirs/jirs18.html#LuM97 CrossRefGoogle Scholar
  17. P. Mahlmann, C. Schindelhauer, Peer-to-Peer-Networks (Springer, Berlin, 2007) Google Scholar
  18. G. Meixner, A. Kröner, G. Kahl, A summary of end user feedback on digital product memories, in SemProM—Foundations of Semantic Product Memories for the Internet of Things, ed. by W. Wahlster. Cognitive Technologies (Springer, Berlin, 2013) Google Scholar
  19. A. Möller, L. Roalter, M. Kranz, Cognitive objects for human-computer interaction and human-robot interaction, in Proceedings of the 6th International Conference on Human-Robot Interaction (HRI’11), Lausanne, Switzerland, March (2011), pp. 207–208 CrossRefGoogle Scholar
  20. J. Neidig, T. Grosch, U. Heim, The Smart SemProM, in SemProM—Foundations of Semantic Product Memories for the Internet of Things, ed. by W. Wahlster. Cognitive Technologies (Springer, Berlin, 2013) Google Scholar
  21. A. Schmitz, Wi-Fi, Bluetooth, NFC and other wireless technologies. EPN Feature Article, February 2011. http://www.epn-online.com/page/new154675/wi-fi-bluetooth-nfc-and-other-wireless-echnologies.html
  22. M. Schmitz, B. Brandherm, J. Neidig, S. Schachtl, M. Schuster, Interaction modalities for digital product memories, in SemProM—Foundations of Semantic Product Memories for the Internet of Things, ed. by W. Wahlster. Cognitive Technologies (Springer, Berlin, 2013) Google Scholar
  23. M. Schneider, M. Velten, J. Haupert, The ObjectRules framework—providing ad hoc context-dependent assistance in dynamic environments, in Proceedings of the Sixth International Conference on Intelligent Environments (IE-10), Kuala Lumpur, Malaysia, July, ed. by V. Callaghan, A. Kameas, S. Egerton, I. Satoh, M. Weber (IEEE Computer Society, Washington, 2010), pp. 122–127 Google Scholar
  24. M. Stilman, J.-U. Schamburek, J. Kuffner, T. Asfour, Manipulation planning among movable obstacles, in IEEE Int. Conf. on Robotics and Automation (ICRA’07), Rome, Italy, April (IEEE, New York, 2007), pp. 3327–3332. http://dblp.uni-trier.de/db/conf/icra/icra2007.html#StilmanSKA07 CrossRefGoogle Scholar
  25. I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Balakrishnan, Chord: a scalable peer-to-peer lookup service for Internet applications, in ACM SIGCOMM 2001, San Diego, CA, USA, August (2001) Google Scholar
  26. N. Vahrenkamp, T. Asfour, R. Dillmann, Motion planning for humanoid robots, in Efficient Motion and Grasp Planning for Humanoid Robots (Springer, Berlin, 2010), pp. 129–160 CrossRefGoogle Scholar
  27. W. Wahlster (ed.), SemProM—Foundations of Semantic Product Memories for the Internet of Things. Cognitive Technologies (Springer, Berlin, 2013) Google Scholar
  28. S. Wei, Building boundary extraction based on lidar point clouds data. ISPRS08, 2008 Google Scholar
  29. ZigBee Specification, ZigBee Document 053474r06 Version, 2008 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alexander Kröner
    • 2
    Email author
  • Jens Haupert
    • 1
    • 2
  • José de Gea Fernández
    • 3
  • Rainer Steffen
    • 4
  • Christian Kleegrewe
    • 5
  • Martin Schneider
    • 5
  1. 1.Georg Simon Ohm University of Applied SciencesNurembergGermany
  2. 2.DFKI GmbH, German Research Center for Artificial IntelligenceSaarbrückenGermany
  3. 3.DFKI GmbH, German Research Center for Artificial IntelligenceBremenGermany
  4. 4.BMW Research and TechnologyMunichGermany
  5. 5.Siemens AGMunichGermany

Personalised recommendations