Market-Based Multiagent Framework for Balanced Task Allocation

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 208)

Abstract

This paper proposes a market-based multiagent task allocation framework for allocating tasks in a balanced manner based on the energy levels of robots. In this framework, a market-based agent is designed for trading tasks considering the robot capabilities, task requirements and energy level of the robot. The framework utilizes a bid weight for distributing the tasks in a balanced manner without frequent using of particular robots. To demonstrate the effectiveness of the proposed framework, a simulation experiment was carried out for a cleaning mission consisting of collecting, carrying, sorting and disposal tasks.

Keywords

Multirobot coordination Market-based task allocation Balanced task allocation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dias, M.B., Kalra, N., Zlot, R., Stentz, A.: Market-based multi-robot coordination: A survey and analysis. Proceedings of IEEE 94, 1257–1270 (2006)CrossRefGoogle Scholar
  2. 2.
    Sariel, S., Balch, T., Stack, J.R.: Real time auction based allocation of tasks for multi-robot exploration problem in dynamic environments. In: AAAI Workshop, pp. 27–33 (2005)Google Scholar
  3. 3.
    Sariel, S., Balch, T.: Efficient bids on task allocation for multi-robot exploration. In: Proc. Int. Conf. Artif. Intelli., pp. 116–121 (2006)Google Scholar
  4. 4.
    Berhault, M., Huang, H., Keskinocak, P., Koenig, S., Elmaghraby, W., Griffin, P., Kleywegt, A.: Robot exploration with combinatorial auctions. In: Proc. IEEE Conf. Intell. Robot. Syst., pp. 1957–1962 (2003)Google Scholar
  5. 5.
    Smith, R.G.: The contract net protocol: High-level communication and control in a distributed problem solver. IEEE Trans. Comput. 29, 1104–1113 (1980)CrossRefGoogle Scholar
  6. 6.
    Beaumont P., Chaib-draa B.: Multiagent coordination techniques for complex environments: The case of a fleet of combat ships. IEEE Trans. Syst., Man, Cybern., Part C, 37, 373–385 (2007)Google Scholar
  7. 7.
    Dias, M.B.: Traderbots A new paradigm for robust and efficient multi-robot coordination in dynamic environments. Ph.D. dissertation, Robotics Institute, Carnegie Mellon University (2004)Google Scholar
  8. 8.
    Gerkey, B.P., Mataric, M.J.: Sold!: Auction methods for multirobot coordination. IEEE Trans. Robot. Autom. 18, 758–768 (2002)CrossRefGoogle Scholar
  9. 9.
    Vokrinek, J., Komenda, A., Pechoucek, M.: Abstract architecture for task-oriented multi-agent problem solving. IEEE Trans. Syst., Man, Cybern., Part C 41, 31–40 (2011)CrossRefGoogle Scholar
  10. 10.
    Lee, D.-H., Han, J.-H., Kim, J.-H.: A preference-based task allocation framework for multi-robot coordination. In: Proc. IEEE Conf. Robot. Bio., pp. 2925–2930 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Electrical EngineeringKAISTDaejeonRepublic of Korea

Personalised recommendations