Market-Based Multiagent Framework for Balanced Task Allocation

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 208)


This paper proposes a market-based multiagent task allocation framework for allocating tasks in a balanced manner based on the energy levels of robots. In this framework, a market-based agent is designed for trading tasks considering the robot capabilities, task requirements and energy level of the robot. The framework utilizes a bid weight for distributing the tasks in a balanced manner without frequent using of particular robots. To demonstrate the effectiveness of the proposed framework, a simulation experiment was carried out for a cleaning mission consisting of collecting, carrying, sorting and disposal tasks.


Multirobot coordination Market-based task allocation Balanced task allocation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dias, M.B., Kalra, N., Zlot, R., Stentz, A.: Market-based multi-robot coordination: A survey and analysis. Proceedings of IEEE 94, 1257–1270 (2006)CrossRefGoogle Scholar
  2. 2.
    Sariel, S., Balch, T., Stack, J.R.: Real time auction based allocation of tasks for multi-robot exploration problem in dynamic environments. In: AAAI Workshop, pp. 27–33 (2005)Google Scholar
  3. 3.
    Sariel, S., Balch, T.: Efficient bids on task allocation for multi-robot exploration. In: Proc. Int. Conf. Artif. Intelli., pp. 116–121 (2006)Google Scholar
  4. 4.
    Berhault, M., Huang, H., Keskinocak, P., Koenig, S., Elmaghraby, W., Griffin, P., Kleywegt, A.: Robot exploration with combinatorial auctions. In: Proc. IEEE Conf. Intell. Robot. Syst., pp. 1957–1962 (2003)Google Scholar
  5. 5.
    Smith, R.G.: The contract net protocol: High-level communication and control in a distributed problem solver. IEEE Trans. Comput. 29, 1104–1113 (1980)CrossRefGoogle Scholar
  6. 6.
    Beaumont P., Chaib-draa B.: Multiagent coordination techniques for complex environments: The case of a fleet of combat ships. IEEE Trans. Syst., Man, Cybern., Part C, 37, 373–385 (2007)Google Scholar
  7. 7.
    Dias, M.B.: Traderbots A new paradigm for robust and efficient multi-robot coordination in dynamic environments. Ph.D. dissertation, Robotics Institute, Carnegie Mellon University (2004)Google Scholar
  8. 8.
    Gerkey, B.P., Mataric, M.J.: Sold!: Auction methods for multirobot coordination. IEEE Trans. Robot. Autom. 18, 758–768 (2002)CrossRefGoogle Scholar
  9. 9.
    Vokrinek, J., Komenda, A., Pechoucek, M.: Abstract architecture for task-oriented multi-agent problem solving. IEEE Trans. Syst., Man, Cybern., Part C 41, 31–40 (2011)CrossRefGoogle Scholar
  10. 10.
    Lee, D.-H., Han, J.-H., Kim, J.-H.: A preference-based task allocation framework for multi-robot coordination. In: Proc. IEEE Conf. Robot. Bio., pp. 2925–2930 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Electrical EngineeringKAISTDaejeonRepublic of Korea

Personalised recommendations