Advertisement

Application of Fuzzy Logic in Learning Autonomous Robots Systems

  • María Laura González
  • Jorge Salvador Ierache
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 208)

Abstract

Autonomous Robots Systems (ARS) can learn by establishing plans, executing them in a given environment and analyzing the results of the execution. The logic used among this process is usually the classic logic, which most of the times ends up being too restrictive and not consistent with the world the ARS is facing. This paper proposes the application of fuzzy logic to address this issue and improve the ARS learning curve considerably.

Keywords

Robots Fuzzy Logic Machine Learning Autonomous Systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ierache, J., Garcia Martinez, R., De Giusti, A.: Learning Life Cycle in Autonomous Robots Systems. In: Bramer, M. (ed.) Artificial Intelligence and Practice II. IFIP, vol. 276, pp. 451–455. Springer, Boston (2008)Google Scholar
  2. 2.
    Ierache, J., García-Martínez, R., De Giusti, A.: Learning by collaboration in intelligent autonomous systems. In: Bramer, M. (ed.) IFIP AI 2010. IFIP AICT, vol. 331, pp. 143–152. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    García-Martínez, R., Borrajo, D.: Planning, learning, and executing in autonomous systems. In: Steel, S. (ed.) ECP 1997. LNCS (LNAI), vol. 1348, pp. 208–220. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  4. 4.
    García Martínez, R., Borrajo, D.: An Integrated Approach of Learning, Planning and Executing. Journal of Robots and Robotic Systems 29, 47–78 (2000)MATHCrossRefGoogle Scholar
  5. 5.
    García-Martínez, R., Borrajo, D., Maceri, P., Britos, P.: Learning by knowledge sharing in autonomous intelligent systems. In: Sichman, J.S., Coelho, H., Rezende, S.O. (eds.) IBERAMIA–SBIA 2006. LNCS (LNAI), vol. 4140, pp. 128–137. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Matellan, V., Fernandez, C., Molina, J.: Genetic learning of fuzzy reactive controllers. Robotics and Autonomous Systems 25, 33–41 (1998)CrossRefGoogle Scholar
  7. 7.
    E-Puck, “Robot e-puck”, web (2012), http://www.e-puck.org/
  8. 8.
    Webots, “Simulador Webots”, web (2012), http://www.cyberbotics.com/
  9. 9.
    Braitenberg, V.: Vehicles: Explorations In Synthetic Psychology. MIT Press (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • María Laura González
    • 1
  • Jorge Salvador Ierache
    • 1
    • 2
  1. 1.Information Advance Systems Laboratory, Engineering SchoolUniversity of Buenos Aires, Universidad de MorónMorónArgentina
  2. 2.Institute of Intelligent Systems and Robotics Experimental TeachingFICCTE, UM Universidad de MorónMorónArgentina

Personalised recommendations