Sway Motion Cancellation Scheme Using a RGB-D Camera-Based Vision System for Humanoid Robots

  • Jeong-Ki Yoo
  • Seung-Beom Han
  • Jong-Hwan Kim
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 208)


When a humanoid robot walks dynamically, it generates sway motion which is reflected as an oscillative sine wave-like pattern at its center-of-mass (CoM) trajectory. In order to cancel out such motion from the coordinates of detected obstacles, this paper proposes a sway motion cancellation scheme incorporated with walking pattern generator of humanoid robots along with a RGB-D camera-based vision system. After the preprocessing for the depth information from the RGB-D camera using attitude reference system (ARS)-generated roll and pitch angles of the vision module, the coordinates of detected obstacles are estimated using the ground filtered 3D points. Then, the sway motion cancellation scheme is applied to the coordinates of detected obstacles not only for the lateral direction of the robot but also for the sagittal one by referring the CoM trajectory collected from the walking pattern generator. The proposed sway motion cancellation scheme and the RGB-D camera-based vision system are verified by experiments using a small-sized humanoid robot, HanSaRam-IX (HSR-IX).


Humanoid robot navigation sway motion cancellation depth camera-based vision module RGB-D sensor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., Fujimura, K.: The intelligent ASIMO: system overview and integration. Paper presented at IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2478–2483 (September 2002)Google Scholar
  2. 2.
    Akachi, K., Kaneko, K., Kanehira, N., Ota, S., Miyamori, G., Hirata, M., Kajita, S., Kanehiro, F.: Development of humanoid robot HRP-3P. Paper presented at IEEE-RAS International Conference on Humanoid Robots, Tsukuba, Japan, pp. 50–55 (December 2005)Google Scholar
  3. 3.
    Yoo, J.-K., Lee, B.-J., Kim, J.-H.: Recent progress and development of the humanoid robot HanSaRam. Robot. and Auton. Syst. 57(10), 973–981 (2009), doi:10.1016/j.robot.2009.07.012CrossRefGoogle Scholar
  4. 4.
    Lee, B.-J., Stonier, D., Kim, Y.-D., Yoo, J.-K., Kim, J.-H.: Modifiable walking pattern of a humanoid robot by using allowable ZMP variation. IEEE Trans. Robot. 24(4), 917–925 (2008), doi:10.1109/TRO.2008.926859CrossRefGoogle Scholar
  5. 5.
    Gutmann, J.-S., Fukuchi, M., Fujita, M.: 3D perception and environment map generation for humanoid robot navigation. J. Robot. Res. 27(10), 1117–1134 (2008), doi:10.1177/0278364908096316CrossRefGoogle Scholar
  6. 6.
    Okada, K., Kojima, M., Sagawa, Y., Ichino, T., Sato, K., Inaba, M.: Vision based behavior verification system of humanoid robot for daily environment tasks. Paper presented at IEEE/RAS Int. Conf. on Humanoid Robot., pp. 7–12 (December 2006), doi:10.1109/ICHR.2006.321356Google Scholar
  7. 7.
    Asfour, T., Azad, P., Vahrenkamp, N., Regenstein, K., Bierbaum, A., Welke, K., Schöder, J., Dillmann, R.: Toward humanoid manipulation in human-centred environments. Robot. Auton. Syst. 56(1), 54–65 (2008), doi:10.1016/j.robot.2007.09.013CrossRefGoogle Scholar
  8. 8.
    Hale, J.G., Pollick, F.E.: ‘Sticky hands’: learning and generalization for cooperative physical interactions with a humanoid robot. IEEE Trans. Syst. Man Cybern. C 35(4), 512–521 (2005), doi:10.1109/TSMCC.2004.840063CrossRefGoogle Scholar
  9. 9.
    Seara, J.F., Schmidt, G.: Intelligent gaze control for vision-guided humanoid walking: methodological aspects. Robot. Auton. Syst. 48(4), 231–248 (2004), doi:10.1016/j.robot.2004.07.003CrossRefGoogle Scholar
  10. 10.
    Yoo, J.-K., Kim, J.-H.: Navigation framework for humanoid robots integrating gaze control and modified-univector field method to avoid dynamic obstacles. Paper presented at IEEE/RSJ Int. Conf. Intell. Robot. and Syst., Taipei, Taiwan, pp. 1683–1689 (October 2010), doi: 10.1109/IROS.2010.5650381Google Scholar
  11. 11.
    Yoo, J.-K., Kim, J.-H.: Fuzzy integra-based gaze control architecture incorporated with modified univector field navigation for humanoid robots. IEEE Trans. Syst. Man Cybern. B Cybern. 42(1), 125–139 (2012), doi:10.1109/TSMCB.2011.2162234MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dune, C., Herdt, A., Stasse, O., Wieber, P.-B., Yokoi, K., Yoshida, E.: Cancelling the sway motion of dynamic walking in visual servoing. Paper presented at IEEE/RSJ Int. Conf. Intell. Robot. Syst., Taipei, Taiwan, pp. 3175–3180 (October 2010), doi:10.1109/IROS.2010.5649126Google Scholar
  13. 13.
    Dune, C., Herdt, A., Marchand, E., Stasse, O., Wieber, P.-B., Yoshida, E.: Vision based control for humanoid robots. Paper presented at IROS Workshop on Vis. Control of Mob. Robot., pp. 19–26 (2011)Google Scholar
  14. 14.
    Hong, Y.-D., Lee, B.-J., Kim, J.-H.: Command state-based modifiable walking pattern generation on an inclined plane in pitch and roll directions for humanoid robots. IEEE/ASME Trans. Mech. 16(4), 783–789 (2011), doi:10.1109/TMECH.2010.2089530CrossRefGoogle Scholar
  15. 15.
    Kinect description (2011), (accessed October 15, 2011)
  16. 16.
    Disassemble process of Kinect (2011), (accessed October 15, 2011)
  17. 17.
    MyArs-USB of With Robot (2011), (accessed October 15, 2011)
  18. 18.
    OpenNI official web site (2011), (accessed October 15, 2011)
  19. 19.
    OpenCV official web site (2011), (accessed October 17, 2011)
  20. 20.
    Burrus, N.: Kinect calibration (2012), (accessed July 17, 2012)

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Digital Media and Communications R&D CenterSamsung ElectronicsSuwonRepublic of Korea
  2. 2.Department of Electrical EngineeringKAISTYuseong-guRepublic of Korea

Personalised recommendations