Advertisement

A New Method of Privacy Preserving Computation over 2-Part Fully Distributed Data

  • The Dung Luong
  • Dang Hung Tran
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 209)

Abstract

In this paper, we propose a new protocol of privacy preserving frequency computation in 2-part fully distributed data (2PFD). This protocol are practical than of previous protocol. More specifically, we achieve a protocol that can be done in situations with various number of users and larger than a given threshold.

Keywords

Privacy Preserving Data Mining Secure Protocol 2-Part Fully Distributed Data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, D., Aggarwal, C.C.: On the design and quantification of privacy preserving data mining algorithms. In: Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 247–255 (2001)Google Scholar
  2. 2.
    Agrawal, R., Srikant, R., Thomas, D.: Privacy preserving OLAP. In: SIGMOD 2005: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, pp. 251–262 (2005)Google Scholar
  3. 3.
    Agrawal, S., Haritsa, J.R.: A Framework for High-Accuracy Privacy-Preserving Mining. In: Proceedings of the 21st International Conference on Data Engineering, ICDE 2005, pp. 193–204. IEEE Computer Society (2005)Google Scholar
  4. 4.
    Boneh, D.: The Decision Diffie-Hellman Problem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X., Zhu, M.Y.: Tools for privacy preserving distributed data mining. SIGKDD Explor. Newsl. 4(2), 28–34 (2002)CrossRefGoogle Scholar
  6. 6.
    Dowd, J., Xu, S., Zhang, W.: Privacy-preserving decision tree mining based on random substitutions. In: Müller, G. (ed.) ETRICS 2006. LNCS, vol. 3995, pp. 145–159. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Du, W., Chen, S., Han, Y.S.: Privacy-Preserving Multivariate Statistical Analysis: Linear Regression and Classification. In: Proceedings of the 4th SIAM International Conference on Data Mining, pp. 222–233 (2004)Google Scholar
  8. 8.
    Du, W., Zhan, Z.: Using randomized response techniques for privacy-preserving data mining. In: Proceedings of the ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2003, pp. 505–510 (2003)Google Scholar
  9. 9.
    Dung, L.T., Bao, H.T.: Privacy Preserving Frequency Mining in 2-Part Fully Distributed Setting. IEICE Transactions on Information and Systems E93-D(10), 2702–2708 (2010)Google Scholar
  10. 10.
    Evfimievski, A., Srikant, R., Agrawal, R., Gehrke, J.: Privacy preserving mining of association rules. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 217–228 (2002)Google Scholar
  11. 11.
    Goldreich, O.: The Foundations of Cryptography. In: General Cryptographic Protocols, ch. 7, vol. 2. Cambridge University Press (2004)Google Scholar
  12. 12.
    Hirt, M., Sako, K.: Efficient Receipt-Free Voting Based on Homomorphic Encryption. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 539–556. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the Privacy Preserving Properties of Random Data Perturbation Techniques. In: Proceedings of the Third IEEE International Conference on Data Mining, ICDM 2003, p. 99. IEEE Computer Society (2003)Google Scholar
  14. 14.
    Noack, A., Spitz, S.: Dynamic Threshold Cryptosystem without Group Manager. Network Protocols and Algorithms 1(1), 108–121 (2009)CrossRefGoogle Scholar
  15. 15.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Vaidya, J., Kantarciouglu, M., Clifton, C.: Privacy-preserving Naive Bayes classification. The VLDB Journal 17(4), 879–898 (2008)CrossRefGoogle Scholar
  17. 17.
    Yao, A.C.-C.: How to generate and exchange secrets. In: Proceedings of the 27th Annual Symposium on Foundations of Computer Science, SFCS 1986, pp. 162–167. IEEE Computer Society (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Academy of Cryotographic TechniquesHanoiVietnam
  2. 2.Hanoi National University of EducationHanoiVietnam

Personalised recommendations