Advertisement

Abstract

The production of oil and gas from offshore oil fields is, nowadays, more and more important. As a result of the increasing demand of oil, and being the shallow water reserves not enough, the industry is being pushed forward to develop and exploit more difficult fields in deeper waters.

Keywords

Residual Stress Steel Pipis Wall Thickness Distribution Develop Finite Element Model Collapse Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Palmer AC, King RA (2004) Subsea pipeline engineering. PennWell Corporation, TulsaGoogle Scholar
  2. 2.
    Kyriakides S, Corona E (2007) Mechanics of offshore pipelines, vol I. Buckling and collapse. ElsevierGoogle Scholar
  3. 3.
    Palmer AC, Baldry JAS (1974) Lateral buckling of axially constyrained pipelines. J Petroleum Tech 26:1283-1284Google Scholar
  4. 4.
    Dvorkin EN, Toscano RG (2001) Effects of external/internal pressure on the global buckling of pipelines. In: Bathe K-J (ed) Computational fluid and solid mechanics—proceedings first MIT conference on computational fluid and solid mechanics. ElsevierGoogle Scholar
  5. 5.
    Palmer AC, Martin JH (1975) Buckle propagation in submarine pipelines. Nature 254:46–48CrossRefGoogle Scholar
  6. 6.
    Assanelli AP, Toscano RG, Johnson D, Dvorkin EN (2000) Experimental/numerical analysis of the collpase behavior of steel pipes. Eng Comput 17:459–486CrossRefzbMATHGoogle Scholar
  7. 7.
    Timoshenko SP, Gere JM (1961) Theory of elastic stability. McGraw Hill, New YorkGoogle Scholar
  8. 8.
    Brush DO, Almroth BO (1975) Buckling of bars, plates and shells. McGraw Hill, New YorkzbMATHGoogle Scholar
  9. 9.
    Heise O, Esztergar EP (1970) Elasto-plastic collapse under external pressure. ASME J Eng Ind 92:735–742CrossRefGoogle Scholar
  10. 10.
    Clinedinst WO (1977) Analysis of collapse test data and development of new collapse resistance formulas. Report to the API Task Group on performance propertiesGoogle Scholar
  11. 11.
    Fowler JR, Klementich EF, Chappell JF (1983) Analysis and testing of factors affecting collapse performance of casing. ASME J Energy Resour Technol 105:574–579CrossRefGoogle Scholar
  12. 12.
    Kanda M, Yazaki Y, Yamamoto K, Higashiyama H, Sato T, Inoue T, Murata T, Morikawa H, Yanagimoto S (1983) Development of NT-series oil-country tubular good. Nippon Steel Techn Rep 21:247–262Google Scholar
  13. 13.
    Krug G (1983) Testing of casing under extreme loads. Insitute of Petroleum Engineering Technische Universtät, ClausthalGoogle Scholar
  14. 14.
    Mimura H, Tamano T, Mimaki T (1987) Finite element analysis of collapse strength of casing. Nippon Steel Technical Rep 34:62–69Google Scholar
  15. 15.
    Johns TG, Mesloh RE, Sorenson JE (1978) Propagating buckle arrestors for offshore pipelines. ASME J Press Vessel Technol 100:206–214CrossRefGoogle Scholar
  16. 16.
    Park TD, Kyriakides S (1997) On the performance of integral buckle arrestors for offshore pipelines. Int J Mech Sci 39:643–669CrossRefGoogle Scholar
  17. 17.
    Kyriakides S, Park TD, Netto TA (1998) On the design of integral buckle arrestors for offshore pipelines. Int J Appl Ocean Res 20:95–104CrossRefGoogle Scholar
  18. 18.
    Netto TA, Estefen SF (1996) Buckle arrestors for deepwater pipelines. Int J Mar Struct 9:873–883CrossRefGoogle Scholar
  19. 19.
    Langer CG (1999) Buckle arrestors for deepwater pipelines. In: Proceedings of the offshore technology conference, OTC 10711, Houston, TxGoogle Scholar
  20. 20.
    Netto TA, Kyriakides S (2000) Dynamic performance of integral buckle arrestors for offshore pipelines. Part I: Experiments. Int J Mech Sci 42:1405–1423CrossRefGoogle Scholar
  21. 21.
    Netto TA, Kyriakides S (2000) Dynamic performance of integral buckle arrestors for offshore pipelines. Part II: Analysis. Int J Mech Sci 42:1425–1452CrossRefGoogle Scholar
  22. 22.
    Dvorkin EN, Bathe K-J (1984) A continuum mechanics based four-node shell element for general nonlinear analysis. Eng Comput 1:77–88CrossRefGoogle Scholar
  23. 23.
    Bathe K-J, Dvorkin EN (1985) A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation. Int J Numer Methods Eng 21:367–383CrossRefzbMATHGoogle Scholar
  24. 24.
    Bathe K-J, Dvorkin EN (1986) A formulation of general shell elements—the use of mixed interpolation of tensorial components. Int J Numer Methods Eng 22:697–722CrossRefzbMATHGoogle Scholar
  25. 25.
    Toscano RG, Amenta PM, Dvorkin EN (2002) Enhancement of the collapse resistance of tubular products for deepwater pipeline applications. In: IBC’S offshore pipeline Technology, conference documentationGoogle Scholar
  26. 26.
    Toscano RG, Timms C, Dvorkin EN, DeGeer D (2003) Determination of the collapse and propagation pressure of ultra-deepwater pipelines. In: OMAE 2003, 22nd international conference on offshore mechanics and artic engineeringGoogle Scholar
  27. 27.
    Arbocz J, Babcock CD (1969) The effect of general imperfections on the buckling of cylindrical shell. ASME J Appl Mech 36:28–38Google Scholar
  28. 28.
    Arbocz J, Williams JG (1977) Imperfection surveys of a 10-ft diameter shell atructure. AIAA J 15:949–956CrossRefGoogle Scholar
  29. 29.
    Yeh MK, Kyriakides S (1988) Collapse of deepwater pipelines. ASME J Energy Res Tech 110:1–11Google Scholar
  30. 30.
    Toscano RG, Gonzalez M, Dvorkin EN (2003) Validation of a finite element model that simulates the behavior of steel pipes under external pressure. J Pipeline Integr 2:74–84Google Scholar
  31. 31.
    Toscano RG, Mantovano LO, Dvorkin EN (2004) On the numerical calculation of collapse propagation pressure of steel deepwater pipelines under external pressure and bending: experimental verification of the finite element results. In: Proceedings 4th international conference on pipeline technology, pp 1417–1428Google Scholar
  32. 32.
    Toscano RG, Dvorkin EN (2011) Collapse of steel pipes under external pressure and axial tension. J Pipeline Eng 4:213–214Google Scholar
  33. 33.
    Toscano RG, Mantovano LO, Amenta P, Charreau R, Johnson D, Assanelli AP, Dvorkin EN (2006) Collapse arrestors for deepwater pipelines: finite element models and experimental validation for different cross-over mechanisms. In: Proceedings OMAE 2006—25th International conference on offshorw mechanics and artic engineering. Hamburg, GermanyGoogle Scholar
  34. 34.
    Toscano RG, Mantovano LO, Amenta P, Charreau R, Johnson D, Assanelli AP, Dvorkin EN (2008) Collapse arrestors for deepwater pipelines. Cross-over mechanisms. Comput Struct 86:728–743CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.SIM&TECBuenos AiresArgentina

Personalised recommendations