Advertisement

Care-O-bot® 3 – Vision of a Robot Butler

  • Ulrich Reiser
  • Theo Jacobs
  • Georg Arbeiter
  • Christopher Parlitz
  • Kerstin Dautenhahn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7407)

Abstract

This chapter promotes the idea of a robot butler and investigates the advantages and disadvantages of embodiment for the proposed scenario,,Tina and her butler“. In order to make the discussion more tangible, Care-O-bot® 3 is introduced, which is the newest version of the Care-O-bot® series developed by the Fraunhofer Institute for Manufacturing Engineering and Automation IPA in Stuttgart, Germany. Remarkably, the prominent role of this robot was chosen to be a butler’s. A brief overview is given of current human-robot interaction research, focusing on how users react to the idea of a robot companion. The results of different user studies provided inspiration during the design phase of Care-O-bot® 3, in particular with respect to the robot’s appearance and the user interaction concept. The technological aspects are covered shortly before user interaction scenarios embedded in research projects related with Care-O-bot® 3 are presented. Results from real life trials conducted in an elderly care facility are given afterwards. Against the background of these scenarios, the benefits and drawbacks of embodiment for the virtual butler scenario are discussed using the example of Care-O-bot® 3.

Keywords

Humanoid Robot Service Robot Robot Interaction Ambient Assisted Living Elderly Care Facility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benfield, J.A., Szlemko, W.J., Bell, P.A.: Driver personality and anthropomorphic attributions of vehicle personality relate to reported aggressive driving tendencies. Personality and individual Differences 42, 247–258 (2007)CrossRefGoogle Scholar
  2. 2.
    Caporael, L.R.: Anthropomorphism and mechanomorphism: two faces of the human machine. Computers in Human Behaviour 2, 215–234 (1986)CrossRefGoogle Scholar
  3. 3.
  4. 4.
    COGNIRON-The Cognitive Robot Companion, European project in the 6th framework (FP6-IST-002020), Duration: 2004-2007 (2008), www.cogniron.org
  5. 5.
    Dautenhahn, K.: Socially intelligent robots: dimensions of human-robot interaction. Philosophical Transactions for the Royal Society B: Biological Sciences 362(1480), 679–704 (2007)CrossRefGoogle Scholar
  6. 6.
    Dautenhahn, K., Woods, S.N., Kaouri, C., Walters, M.L., Koay, K.L., Werry, I.: What is a robot companion – friend, assistant or butler. In: IEEE IRS/RSJ International Conference on Intelligent Robots and Systems, IROS 2005, Edmonton, Alberta, Canada, pp. 1488–1493 (2005)Google Scholar
  7. 7.
    Eddy, T.J., Gallup, G.G., Povinelli, D.J.: Attribution of cognitive states to animals: Anthropomorphism in comparative perspective. Journal of Social Sciences 49, 87–101 (1993)Google Scholar
  8. 8.
    Goetz, J., Kiesler, S., Powers, A.: Matching robot appearance and behaviour to task to improve human-robot cooperation. In: Proceedings of the 12th IEEE Workshop on Robot and Human Interactive Communication, vol. IXX (2003)Google Scholar
  9. 9.
    Hans, M., Graf, B.: Robotic home assistant Care-O-bot® II. In: Prassler, E., et al. (eds.) Advances in Human-Robot Interaction, pp. 371–384. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Luczak, H., Roetting, M., Schmidt, L.: Let’s talk: anthropomorphism as means to cope with stress of interacting with technical devices. Ergonomics 46(13/14), 1361–1374 (2003)CrossRefGoogle Scholar
  11. 11.
    Mori, M.: Bukimi no tani [the uncanny valley translated by K. F. MacDorman and T. Minato]. Energy 7, 33–35 (1970)Google Scholar
  12. 12.
    MacDorman, K.F.: Androids as an experimental apparatus. In: Proceedings of CogSci-2005 Workshop: Toward Social Mechanisms of Android Science, Stresa, Italy, pp. 106–118 (2005)Google Scholar
  13. 13.
    Multi-Role Shadow Robot for Independent Living (SRS), funded in the 7th European framework with Grant agreement no.: 247772, Duration (February 2010-January 2013), www.srs-project.eu
  14. 14.
    Nass, C., Steuer, J., Tauber, E., Reeder, H.: Anthropomorphism, agency, and ethopoeia: computers as social actors. In: CHI 1993: INTERACT 1993 and CHI 1993 Conference Companion on Human Factors in Computing Systems, pp. 111–112. ACM Press, New York (1993)Google Scholar
  15. 15.
    Nass, C.: Etiquette equality: exhibitions and expectations of computer politeness. Communications of the ACM 47(4), 35–37 (2004)CrossRefGoogle Scholar
  16. 16.
    Parise, S., Kiesler, S., Sproull, L., Waters, K.: Cooperating with life-like interface agents. Computers in Human Behavior 15(2), 123–142 (1999)CrossRefGoogle Scholar
  17. 17.
    Pearson, J., Hu, J., Branigan, H.P., Pickering, M.J., Nass, C.I.: Adaptive language behaviour in HCI: how expectations and beliefs about a system affect users’ word choice. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2006, pp. 1177–1180. ACM Press, New York (2006)Google Scholar
  18. 18.
    Pruitt, J., Grudin, J.: Personas: practice and theory. In: Proceedings of the 2003 Conference on Designing for user Experiences, DUX 2003, pp. 1–15. ACM Press, New York (2003)CrossRefGoogle Scholar
  19. 19.
    Reiser, U., Connette, C., Fischer, J., Kubacki, J., Bubeck, A., Weisshardt, F., Jacobs, T., Parlitz, C., Hägele, M., Verl, A.: Care-O-bot® 3 – Creating a product vision for service robot applications by integrating design and technology. In: The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), St. Louis, USA, pp. 1992–1997 (2009)Google Scholar
  20. 20.
    Reiser, U., Parlitz, C., Klein, P.: Care-O-bot® 3 – Vision of a robot butler. In: Beyond Gray Droids: Domestic Robot Design for the 21st Century: Workshop in Cambridge, UK on 1 September 2009 at HCI 2009, Cambridge, UK (2009)Google Scholar
  21. 21.
    Rosson, M.B., Carroll, J.M.: Usability engineering: scenario-based development of human-computer interaction. Morgan Kaufmann Publishers Inc., San Francisco (2002)Google Scholar
  22. 22.
  23. 23.
    Syrdal, D.S., Dautenhahn, K., Woods, S.N., Walters, M.L., Koay, K.L.: Doing the Right Thing Wrong’ - Personality and Tolerance to Uncomfortable Robot Approaches. In: The 15th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN 2006), pp. 183–188 (2006)Google Scholar
  24. 24.
    Scopelliti, M., Giuliani, M.V., D’Amico, A.M., Fornara, F.: If I had a robot at home. Peoples’ representation of domestic robots. In: Keate, S., Clarkson, J., Langdon, P., Robinson, P. (eds.) Designing a More Inclusive World, pp. 257–266. Springer (2004)Google Scholar
  25. 25.
    Watt, S.N.K.: Seeing things as people. Ph.D. Thesis, Knowledge Media Institute and Department of Psychology, Open University Walton Hall Milton Keynes, UK (1997)Google Scholar
  26. 26.
    Supporting the Knowledge Transfer for a Participative Design of the Care Work Sector through Microelectronics (WiMi-Care), funded by the German Federal Ministry of Research and Technology (BMBF, support code: 01FC08024-27), Duration (November 2008-October 2011), www.wimi-care.de
  27. 27.
    Jacobs, T., Graf, B.: Working Brief 23: Pilotanwendungen: Ergebnisse für die Weiterentwicklung des Care-O-bot® 3 hinsichtlich benötigter Fähigkeiten und Akzeptanz (2010), http://www.wimi-care.de/outputs.html#Briefs
  28. 28.
    Bartneck, C., Bleeker, T., Bun, J., Fens, P., Riet, L.: The influence of robot anthropomorphism on the feelings of embarrassment when interacting with robots. Paladyn – Journal of Behavioral Robotics 1(2), 109–115 (2010)CrossRefGoogle Scholar
  29. 29.
    Syrdal, D.S., Dautenhahn, K., Woods, S.N., Walters, M.L., Koay, K.L.: Looking good? Appearance preferences and robot personality inferences at zero acquaintance. In: Proc. AAAI - Spring Symposium 2007: Multidisciplinary Collaboration for Socially Assistive Robotics, March 26-28, pp. 86–92. Stanford University, AAAI Technical Report, AAAI Press, Palo Alto (2007)Google Scholar
  30. 30.
    Tapus, A., Tapus, C., Matarić, M.J.: User-Robot Personality Matching and Assistive Robot Behavior Adaptation for Post-Stroke Rehabilitation Therapy. Intelligent Service Robotics Journal, 169–183 (2008)Google Scholar
  31. 31.
    Walters, M.L., Syrdal, D.S., Dautenhahn, K., te Boekhorst, R., Koay, K.L.: Avoiding the uncanny valley: robot appearance, personality and consistency of behavior in an attention-seeking home scenario for a robot companion. Autonomous Robots 24(2), 159–178 (2008)CrossRefGoogle Scholar
  32. 32.
    Bethel, C.L., Murphy, R.R.: Survey of Non-facial/Non-verbal Affective Expressions for Appearance-Constrained Robots. IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews 38, 83–92 (2008)CrossRefGoogle Scholar
  33. 33.
    Woods, S.N., Dautenhahn, K., Kaouri, C., te Boekhorst, R., Koay, K.L., Walters, M.L.: Are Robots Like People? - Relationships between Participant and Robot Personality Traits in Human-Robot Interaction Studies. Interaction Studies 8(2), 281–305 (2007)CrossRefGoogle Scholar
  34. 34.
    Syrdal, D.S., Koay, K.L., Gácsi, M., Walters, M.L., Dautenhahn, K.: Video Prototyping of Dog-Inspired Non-verbal Affective Communication for an Appearance Constrained Robot. In: Proceedings IEEE RO-MAN 2010, 19th IEEE International Symposium in Robot and Human Interactive Communication, September 12-15, pp. 632–637. IEEE Press, Viareggio (2010)Google Scholar
  35. 35.
    LIREC: Living with Robots and Interaction Companions, FP7 Integrated Project (2008-2012), http://www.lirec.org/
  36. 36.
    Luštrek, M., Kaluša, B.: Fall detection and activity recognition with machine learning. Informatica 33, 205–212 (2009)Google Scholar
  37. 37.
    Jara, A.J., Zamora-Izquierdo, M.A., Gomez-Skarmeta, A.F.: An Ambient Assisted Living System for Telemedicine with Detection of Symptoms. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2009, Part II. LNCS, vol. 5602, pp. 75–84. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  38. 38.
    De Silva, L.C., Petra, M.I., Punchihewa, G.A.: Ambient Intelligence in a Smart Home for Energy Efficiency and Eldercare. In: Kim, J.-H., Ge, S.S., Vadakkepat, P., Jesse, N., Al Manum, A., Puthusserypady K, S., Rückert, U., Sitte, J., Witkowski, U., Nakatsu, R., Braunl, T., Baltes, J., Anderson, J., Wong, C.-C., Verner, I., Ahlgren, D. (eds.) FIRA 2009. CCIS, vol. 44, pp. 187–194. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  39. 39.
    Kose-Bagci, H., Ferrari, E., Dautenhahn, K., Syrdal, D.S., Nehaniv, C.L.: Effects of Embodiment and Gestures on Social Interaction in Drumming Games with a Humanoid Robot. Advanced Robotics 23, 1951–1996 (2009)CrossRefGoogle Scholar
  40. 40.
    Pereira, A., Martinho, C., Leite, I., Paiva, A.: iCat, the chess player: the influence of embodiment in the enjoyment of a game. In: Proc. 7th Int. Conf. on Autonomous Agents and Multiagent Systems, Estoril, pp. 1253–1256 (2008)Google Scholar
  41. 41.
    Wainer, J., Feil-Seifer, D.J., Shell, D.A., Matarić, M.J.: Embodiment and human–robot interaction: a taskbased perspective. In: Proc. Int. Conf. on Human–Robot Interaction, Jeju Island, pp. 872–877 (2007)Google Scholar
  42. 42.
    Powers, A., Kiesler, S., Fussell, S., Torrey, C.: Comparing a computer agent with a humanoid robot. In: Proc. ACM/IEEE Int. Conf. on Human–Robot Interaction, Washington, DC, pp. 145–152 (2007)Google Scholar
  43. 43.
    Lee, K.M., Jung, Y., Kim, J., Kim, S.R.: Are physically embodied social agents better than disembodied social agents?: the effects of physical embodiment, tactile interaction, and people’s loneliness in human–robot interaction. Int. J. Hum.-Comput. Stud. 64, 962–973 (2006)CrossRefGoogle Scholar
  44. 44.
    Bartneck, C.: eMuu — an embodied emotional character for the ambient intelligent home. PhD Thesis, Eindhoven (2002)Google Scholar
  45. 45.
    Wainer, J., Feil-Seifer, D.J., Shell, D.A., Matarić, M.J.: The role of physical embodiment in human–robot interaction. In: Proc. IEEE Int. Workshop on Robot and Human Interactive Communication, Hatfield, pp. 117–122 (2006)Google Scholar
  46. 46.
    Tapus, A., Matarić, M.J.: Socially assistive robotic music therapist for maintaining attention of older adults with cognitive impairments. In: Proc. AAAI Fall Symp. AI in Eldercare: New Solutions to Old Problem, Washington, DC, pp. 297–298 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ulrich Reiser
    • 1
  • Theo Jacobs
    • 1
  • Georg Arbeiter
    • 1
  • Christopher Parlitz
    • 2
  • Kerstin Dautenhahn
    • 3
  1. 1.Fraunhofer IPAAbteilung RobotersystemeStuttgartGermany
  2. 2.SCHUNK GmbH & Co. KGLauffen/NeckarGermany
  3. 3.Adaptive Systems Research Group, School of Computer ScienceUniversity of HertfordshireHatfield HertsUnited Kingdom

Personalised recommendations