Skip to main content

Cross Anisotropic Cost Volume Filtering for Segmentation

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7724))

Included in the following conference series:

Abstract

We study an advanced method for supervised multi-label image segmentation. To this end, we adopt a classic framework which recently has been revitalised by Rhemann et al. (2011). Instead of the usual global energy minimisation step, it relies on a mere evaluation of a cost function for every solution label, which is followed by a spatial smoothing step of these costs. While Rhemann et al. concentrate on efficiency, the goal of this paper is to equip the general framework with sophisticated subcomponents in order to develop a high-quality method for multi-label image segmentation: First, we present a substantially improved cost computation scheme which incorporates texture descriptors, as well as an automatic feature selection strategy. This leads to a high-dimensional feature space, from which we extract the label costs using a support vector machine. Second, we present a novel anisotropic diffusion scheme for the filtering step. In this PDE-based process, the smoothing of the cost volume is steered along the structures of the previously computed feature space. Experiments on widely used image databases show that our scheme produces segmentations of clearly superior quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Scharstein, D., Szeliski, R.: Stereo matching with non-linear diffusion. In: Proc. Conf. on Computer Vision and Pattern Recognition, pp. 343–350. IEEE (1996)

    Google Scholar 

  2. Rhemann, C., Hosni, A., Bleyer, M., Rother, C., Gelautz, M.: Fast cost-volume filtering for visual correspondence and beyond. In: Proc. Conference on Computer Vision and Pattern Recognition, pp. 3017–3024. IEEE (2011)

    Google Scholar 

  3. Masnou, S., Morel, J.M.: Level lines based disocclusion. In: Proc. International Conference on Image Processing, vol. 3, pp. 259–263 (1998)

    Google Scholar 

  4. Bertalmío, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proc. SIGGRAPH, pp. 417–424. ACM (2000)

    Google Scholar 

  5. Weickert, J., Welk, M.: Tensor field interpolation with PDEs. In: Weickert, J., Hagen, H. (eds.) Visualization and Processing of Tensor Fields, pp. 315–325. Springer (2006)

    Google Scholar 

  6. Schmaltz, C., Weickert, J., Bruhn, A.: Beating the Quality of JPEG 2000 with Anisotropic Diffusion. In: Denzler, J., Notni, G., Süße, H. (eds.) Pattern Recognition. LNCS, vol. 5748, pp. 452–461. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Mumford, D., Shah, J.: Boundary detection by minimizing functionals, I. In: Proc. Conference Computer Vision and Pattern Recognition, pp. 22–26. IEEE (1985)

    Google Scholar 

  8. Koepfler, G., Lopez, C., Morel, J.M.: A multiscale algorithm for image segmentation by variational method. SIAM Journal Numerical Analysis 31, 282–299 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chan, T.F., Vese, L.A.: Active contours without edges. Transactions on Image Processing 10, 266–277 (2001)

    Article  MATH  Google Scholar 

  10. Brox, T., Rousson, M., Deriche, R., Weickert, J.: Colour, texture, and motion in level set based segmentation and tracking. Image Vision Computing 28, 376–390 (2010)

    Article  Google Scholar 

  11. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. Transactions on Pattern Analysis and Machine Intelligence 23, 1222–1239 (2001)

    Article  Google Scholar 

  12. Boykov, Y., Jolly, M.P.: Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D images. In: Proc. International Conference on Computer Vision, pp. 105–112. IEEE (2001)

    Google Scholar 

  13. Blake, A., Rother, C., Brown, M., Perez, P., Torr, P.: Interactive Image Segmentation Using an Adaptive GMMRF Model. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 428–441. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Rother, C., Kolmogorov, V., Blake, A.: “GrabCut”: interactive foreground extraction using iterated graph cuts. In: Proc. SIGGRAPH, pp. 309–314. ACM (2004)

    Google Scholar 

  15. Lellmann, J., Becker, F., Schnörr, C.: Convex optimization for multi-class image labeling with a novel family of total variation based regularizers. In: Proc. Tenth International Conference on Computer Vision, pp. 646–653. IEEE (2009)

    Google Scholar 

  16. Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. Transactions on Pattern Analysis and Machine Intelligence 26, 530–549 (2004)

    Article  Google Scholar 

  17. Yoon, K.J., Kweon, I.S.: Adaptive support-weight approach for correspondence search. Trans. on Pattern Analysis and Machine Intelligence 28, 650–656 (2006)

    Article  Google Scholar 

  18. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proc. International Conference on Computer Vision, pp. 839–846 (1998)

    Google Scholar 

  19. He, K., Sun, J., Tang, X.: Guided Image Filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 1–14. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Paris, S., Durand, F.: A Fast Approximation of the Bilateral Filter Using a Signal Processing Approach. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 568–580. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  22. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence 97, 273–324 (1997)

    Article  MATH  Google Scholar 

  23. Lowe, D.L.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)

    Article  Google Scholar 

  24. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Schmid, C., Soatto, S., Tomasi, C. (eds.) Proc. Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 886–893 (2005)

    Google Scholar 

  25. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. Transactions of the Systems, Man and Cybernetics, 610–621 (1973)

    Google Scholar 

  26. Duda, R.O., Stork, D.G., Hart, P.E.: Pattern Classification, 2nd edn. Wiley (2000)

    Google Scholar 

  27. Vapnik, V.: The nature of statistical learning theory. In: Statistics for Engineering and Information Science. Springer (2000)

    Google Scholar 

  28. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  29. Duchenne, O., Audibert, J.Y.: Fast interactive segmentation using color and textural information. Technical Report 06-26, CERTIS, ParisTech (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kramarev, V., Demetz, O., Schroers, C., Weickert, J. (2013). Cross Anisotropic Cost Volume Filtering for Segmentation. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37331-2_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37331-2_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37330-5

  • Online ISBN: 978-3-642-37331-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics