Skip to main content

Efficient Pixel-Grouping Based on Dempster’s Theory of Evidence for Image Segmentation

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7724))

Included in the following conference series:

Abstract

In this paper we propose an algorithm for image segmentation using graph cuts which can be used to efficiently solve labeling problems on high resolution images or image sequences. The basic idea of our method is to group large homogeneous regions to one single variable. Therefore we combine the appearance and the task specific similarity with Dempster’s theory of evidence to compute the basic belief that two pixels/groups will have the same label in the minimum energy state. Experiments on image and video segmentation show that our grouping leads to a significant speedup and memory reduction of the labeling problem. Thus large-scale labeling problems can be solved in an efficient manner with a low approximation loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. TPAMI 26, 1124–1137 (2004)

    Article  Google Scholar 

  2. Blake, A., Rother, C., Brown, M., Perez, P., Torr, P.: Interactive Image Segmentation Using an Adaptive GMMRF Model. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 428–441. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph cuts. In: ICCV, pp. 26–33 (2003)

    Google Scholar 

  4. Lempitsky, V., Boykov, Y.: Global optimization for shape fitting. In: CVPR, pp. 1–8 (2007)

    Google Scholar 

  5. Kohli, P., Torr, P.H.S.: Efficiently solving dynamic markov random fields using graph cuts. In: ICCV, vol. 2, pp. 922–929 (2005)

    Google Scholar 

  6. Rother, C., Kolmogorov, V., Blake, A.: Grabcut: interactive foreground extraction using iterated graph cuts. SIGGRAPH 23, 309–314 (2004)

    Article  Google Scholar 

  7. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. TPAMI 23, 1222–1239 (2002)

    Article  Google Scholar 

  8. Delong, A., Boykov, Y.: A scalable graph-cut algorithm for N-D grids. In: CVPR (2008)

    Google Scholar 

  9. Kim, T., Nowozin, S., Kohli, P., Yoo, C.D.: Variable grouping for energy minimization. In: CVPR, pp. 1913–1920 (2011)

    Google Scholar 

  10. Bhusnurmath, A., Taylor, C.: Graph cuts via l 1 norm minimization. TPAMI 30, 1866–1871 (2008)

    Article  Google Scholar 

  11. Komodakis, N.: Towards More Efficient and Effective LP-Based Algorithms for MRF Optimization. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 520–534. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Boykov, Y., Jolly, M.: Interactive graph cuts for optimal boundary & region segmentation of objects in ND images. In: ICCV, vol. 1, pp. 105–112 (2001)

    Google Scholar 

  13. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. IJCV 59, 167–181 (2004)

    Article  Google Scholar 

  14. Comaniciu, D., Meer, P., Member, S.: Mean shift: a robust approach toward feature space analysis. TPAMI 24, 603–619 (2002)

    Article  Google Scholar 

  15. Levinshtein, A., Stere, A., Kutulakos, K.N., Fleet, D.J., Dickinson, S.J., Siddiqi, K.: TurboPixels: fast superpixels using geometric flows. TPAMI 31, 2290–2297 (2009)

    Article  Google Scholar 

  16. Veksler, O., Boykov, Y., Mehrani, P.: Superpixels and Supervoxels in an Energy Optimization Framework. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 211–224. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Scheuermann, B., Rosenhahn, B.: SlimCuts: GraphCuts for High Resolution Images Using Graph Reduction. In: Boykov, Y., Kahl, F., Lempitsky, V., Schmidt, F.R. (eds.) EMMCVPR 2011. LNCS, vol. 6819, pp. 219–232. Springer, Heidelberg (2011)

    Google Scholar 

  18. Lermé, N., Létocart, L., Malgouyres, F.: Reduced graphs for min-cut/max-flow approaches in image segmentation. ENDM 37, 63–68 (2011)

    Google Scholar 

  19. Puzicha, J., Buhmann, J.: Multiscale annealing for grouping and unsupervised texture segmentation. IJCVIU 76, 213–230 (1999)

    Google Scholar 

  20. Kohli, P., Lempitsky, V., Rother, C.: Uncertainty Driven Multi-scale Optimization. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) Pattern Recognition. LNCS, vol. 6376, pp. 242–251. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Sinop, A.K., Grady, L.: Accurate Banded Graph Cut Segmentation of Thin Structures Using Laplacian Pyramids. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 896–903. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Dempster, A.P.: A generalization of Bayesian inference. Journal of the Royal Statistical Society 30, 205–247 (1968)

    MathSciNet  MATH  Google Scholar 

  23. Shafer, G.: A mathematical theory of evidence. Princeton university press (1976)

    Google Scholar 

  24. Adamek, T., O’Connor, N.E.: Using Dempster-Shafer theory to fuse multiple information sources in region-based segmentation. In: ICIP, pp. 269–272 (2007)

    Google Scholar 

  25. Chaabane, S.B., Sayadi, M., Fnaiech, F., Brassart, E.: Dempster-Shafer evidence theory for image segmentation: application in cells images. IJSP (2009)

    Google Scholar 

  26. Schüldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM approach. In: ICPR, pp. 32–36 (2004)

    Google Scholar 

  27. Sand, P., Teller, S.J.: Particle video: long-range motion estimation using point trajectories. In: CVPR, pp. 2195–2202 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scheuermann, B., Schlosser, M., Rosenhahn, B. (2013). Efficient Pixel-Grouping Based on Dempster’s Theory of Evidence for Image Segmentation. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37331-2_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37331-2_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37330-5

  • Online ISBN: 978-3-642-37331-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics