Abstract
Local feature coding has drawn much attention in recent years. Many excellent coding algorithms have been proposed to improve the bag-of-words model. This paper proposes a new local feature coding method called local hypersphere coding (LHC) which possesses two distinctive differences from traditional coding methods. Firstly, we describe local features by the edges between visual words. Secondly, the reconstruction center is moved from the origin to the nearest visual word, thus feature coding is performed on the hypersphere of feature space. We evaluate our coding method on several benchmark datasets for image classification. The experimental results of the proposed method outperform several state-of-the-art coding methods, indicating the effectiveness of our method.
Keywords
- Local Feature
- Visual Word
- Benchmark Dataset
- Sparse Code
- Code Method
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 91–110 (2004)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893 (2005)
Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV, pp. 1–22 (2004)
van Gemert, J.C., Geusebroek, J.M., Veenman, C.J., Smeulders, A.W.M.: Kernel Codebooks for Scene Categorization. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 696–709. Springer, Heidelberg (2008)
Jianchao, Y., Kai, Y., Yihong, G., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 1794–1801 (2009)
Jinjun, W., Jianchao, Y., Kai, Y., Fengjun, L., Huang, T., Yihong, G.: Locality-constrained linear coding for image classification. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 3360–3367 (2010)
Zhou, X., Yu, K., Zhang, T., Huang, T.S.: Image Classification Using Super-Vector Coding of Local Image Descriptors. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 141–154. Springer, Heidelberg (2010)
Perronnin, F., Dance, C.: Fisher kernels on visual vocabularies for image categorization. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8 (2007)
Perronnin, F., Sánchez, J., Mensink, T.: Improving the Fisher Kernel for Large-Scale Image Classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010)
Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2169–2178 (2006)
Olshausen, B.A., Fieldt, D.J.: Sparse coding with an overcomplete basis set: a strategy employed by v1. Vision Research 37, 3311–3325 (1997)
Huang, Y., Huang, K., Yu, Y., Tan, T.: Salient coding for image classification. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 1753–1760. IEEE (2011)
Huang, Y., Huang, K., Wang, C., Tan, T.: Exploring relations of visual codes for image classification. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 1649–1656. IEEE (2011)
Zhao, X., Yu, Y., Huang, Y., Huang, K., Tan, T.: Feature coding via vector difference for image classification. In: IEEE International Conference on Image Processing, ICIP (2012)
Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples. In: Workshop on Generative-Model Based Vision, IEEE Proc. CVPR (2004)
Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation of the spatial envelope. Int. J. Comput. Vision 42, 145–175 (2001)
Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 2, pp. 524–531 (2005)
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2007 (VOC 2007) Results (2007)
Liu, L., Wang, L., Liu, X.: In defense of soft-assignment coding. In: 2011 IEEE International Conference on Computer Vision, ICCV, pp. 2486–2493 (2011)
Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: A library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)
Boureau, Y.L., Bach, F., LeCun, Y., Ponce, J.: Learning mid-level features for recognition. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 2559–2566 (2010)
Jain, P., Kulis, B., Grauman, K.: Fast image search for learned metrics. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ren, W., Huang, Y., Zhao, X., Huang, K., Tan, T. (2013). Local Hypersphere Coding Based on Edges between Visual Words. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37331-2_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-37331-2_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37330-5
Online ISBN: 978-3-642-37331-2
eBook Packages: Computer ScienceComputer Science (R0)