Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 871))

Abstract

My personal views of the Chiral Magnetic Effect are presented, which starts with a story about how we came up with the electric-current formula and continues to unsettled subtleties in the formula. There are desirable features in the formula of the Chiral Magnetic Effect but some considerations would lead us to even more questions than elucidations. The interpretation of the produced current is indeed very non-trivial and it involves a lot of confusions that have not been resolved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.Y. Alekseev, V.V. Cheianov, J. Frohlich, Universality of transport properties in equilibrium, Goldstone theorem and chiral anomaly. Phys. Rev. Lett. 81, 3503–3506 (1998). doi:10.1103/PhysRevLett.81.3503

    Article  ADS  Google Scholar 

  2. P.W. Anderson, J.M. Rowell, Probable observation of the Josephson superconducting tunneling effect. Phys. Rev. Lett. 10, 230 (1963). doi:10.1103/PhysRevLett.10.230

    Article  ADS  Google Scholar 

  3. A. Ballon-Bayona, K. Peeters, M. Zamaklar, A chiral magnetic spiral in the holographic Sakai-Sugimoto model. J. High Energy Phys. 11, 164 (2012). doi:10.1007/JHEP11(2012)164

    Article  ADS  Google Scholar 

  4. J. Bardeen, Tunneling into superconductors. Phys. Rev. Lett. 9, 147 (1962). doi:10.1103/PhysRevLett.9.147

    Article  ADS  MATH  Google Scholar 

  5. G. Basar, G.V. Dunne, D.E. Kharzeev, Chiral magnetic spiral. Phys. Rev. Lett. 104, 232301 (2010). doi:10.1103/PhysRevLett.104.232301

    Article  ADS  Google Scholar 

  6. P. Buividovich, M. Chernodub, E. Luschevskaya, M. Polikarpov, Numerical evidence of chiral magnetic effect in lattice gauge theory. Phys. Rev. D 80, 054503 (2009). doi:10.1103/PhysRevD.80.054503

    Article  ADS  Google Scholar 

  7. D. Deryagin, D.Y. Grigoriev, V. Rubakov, Standing wave ground state in high density, zero temperature QCD at large N c . Int. J. Mod. Phys. A 7, 659–681 (1992). doi:10.1142/S0217751X92000302

    Article  ADS  Google Scholar 

  8. E.J. Ferrer, V. de la Incera, C. Manuel, Magnetic color flavor locking phase in high density QCD. Phys. Rev. Lett. 95, 152002 (2005). doi:10.1103/PhysRevLett.95.152002

    Article  ADS  Google Scholar 

  9. K. Fukushima, QCD matter in extreme environments. J. Phys. G 39, 013101 (2012). doi:10.1088/0954-3899/39/1/013101

    Article  ADS  Google Scholar 

  10. K. Fukushima, F. Gelis, The evolving Glasma. Nucl. Phys. A 874, 108–129 (2012). doi:10.1016/j.nuclphysa.2011.11.003

    Article  ADS  Google Scholar 

  11. K. Fukushima, D.E. Kharzeev, H.J. Warringa, The chiral magnetic effect. Phys. Rev. D 78, 074033 (2008). doi:10.1103/PhysRevD.78.074033

    Article  ADS  Google Scholar 

  12. K. Fukushima, D.E. Kharzeev, H.J. Warringa, Electric-current susceptibility and the chiral magnetic effect. Nucl. Phys. A 836, 311–336 (2010). doi:10.1016/j.nuclphysa.2010.02.003

    Article  ADS  Google Scholar 

  13. K. Fukushima, D.E. Kharzeev, H.J. Warringa, Real-time dynamics of the chiral magnetic effect. Phys. Rev. Lett. 104, 212001 (2010). doi:10.1103/PhysRevLett.104.212001

    Article  ADS  Google Scholar 

  14. K. Fukushima, K. Mameda, Wess-Zumino-Witten action and photons from the chiral magnetic effect. Phys. Rev. D 86, 071501 (2012). doi:10.1103/PhysRevD.86.071501

    Article  ADS  Google Scholar 

  15. K. Fukushima, M. Ruggieri, Dielectric correction to the chiral magnetic effect. Phys. Rev. D 82, 054001 (2010). doi:10.1103/PhysRevD.82.054001

    Article  ADS  Google Scholar 

  16. K. Fukushima, H.J. Warringa, Color superconducting matter in a magnetic field. Phys. Rev. Lett. 100, 032007 (2008). doi:10.1103/PhysRevLett.100.032007

    Article  ADS  Google Scholar 

  17. C. Gale, S. Jeon, B. Schenke, P. Tribedy, R. Venugopalan, Event-by-event anisotropic flow in heavy-ion collisions from combined Yang-Mills and viscous fluid dynamics. Phys. Rev. Lett. 100, 012302 (2013). doi:10.1103/PhysRevLett.110.012302

    Article  ADS  Google Scholar 

  18. J.H. Gao, Z.T. Liang, S. Pu, Q. Wang, X.N. Wang, Chiral anomaly and local polarization effect from quantum kinetic approach. Phys. Rev. Lett. 109, 232301 (2012). doi:10.1103/PhysRevLett.109.232301

    Article  ADS  Google Scholar 

  19. M. Giovannini, M. Shaposhnikov, Primordial hypermagnetic fields and triangle anomaly. Phys. Rev. D 57, 2186–2206 (1998). doi:10.1103/PhysRevD.57.2186

    Article  ADS  Google Scholar 

  20. M. Giovannini, M. Shaposhnikov, Primordial magnetic fields, anomalous isocurvature fluctuations and big bang nucleosynthesis. Phys. Rev. Lett. 80, 22–25 (1998). doi:10.1103/PhysRevLett.80.22

    Article  ADS  Google Scholar 

  21. E. Gorbar, V. Miransky, I. Shovkovy, Chiral asymmetry of the Fermi surface in dense relativistic matter in a magnetic field. Phys. Rev. C 80, 032801 (2009). doi:10.1103/PhysRevC.80.032801

    Article  ADS  Google Scholar 

  22. V. Gusynin, V. Miransky, I. Shovkovy, Dimensional reduction and dynamical chiral symmetry breaking by a magnetic field in (3+1)-dimensions. Phys. Lett. B 349, 477–483 (1995). doi:10.1016/0370-2693(95)00232-A

    Article  ADS  Google Scholar 

  23. R. Kaiser, Anomalies and WZW term of two flavor QCD. Phys. Rev. D 63, 076010 (2001). doi:10.1103/PhysRevD.63.076010

    Article  ADS  Google Scholar 

  24. T. Kalaydzhyan, Chiral superfluidity of the quark-gluon plasma (2012)

    Google Scholar 

  25. T. Kalaydzhyan, I. Kirsch, Fluid/gravity model for the chiral magnetic effect. Phys. Rev. Lett. 106, 211601 (2011). doi:10.1103/PhysRevLett.106.211601

    Article  ADS  Google Scholar 

  26. D. Kharzeev, Parity violation in hot QCD: why it can happen, and how to look for it. Phys. Lett. B 633, 260–264 (2006). doi:10.1016/j.physletb.2005.11.075

    Article  ADS  Google Scholar 

  27. D.E. Kharzeev, Topologically induced local P and CP violation in QCD × QED. Ann. Phys. 325, 205–218 (2010). doi:10.1016/j.aop.2009.11.002

    Article  ADS  MATH  Google Scholar 

  28. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, The effects of topological charge change in heavy ion collisions: ‘Event by event P and CP violation’. Nucl. Phys. A 803, 227–253 (2008). doi:10.1016/j.nuclphysa.2008.02.298

    Article  ADS  Google Scholar 

  29. D.E. Kharzeev, H.J. Warringa, Chiral magnetic conductivity. Phys. Rev. D 80, 034028 (2009). doi:10.1103/PhysRevD.80.034028

    Article  ADS  Google Scholar 

  30. D.E. Kharzeev, H.U. Yee, Chiral magnetic wave. Phys. Rev. D 83, 085007 (2011). doi:10.1103/PhysRevD.83.085007

    Article  ADS  Google Scholar 

  31. M. Luscher, SO(4) symmetric solutions of Minkowskian Yang-Mills field equations. Phys. Lett. B 70, 321 (1977). doi:10.1016/0370-2693(77)90668-2

    Article  MathSciNet  ADS  Google Scholar 

  32. M.A. Metlitski, A.R. Zhitnitsky, Anomalous axion interactions and topological currents in dense matter. Phys. Rev. D 72, 045011 (2005). doi:10.1103/PhysRevD.72.045011

    Article  ADS  Google Scholar 

  33. E. Nakano, T. Tatsumi, Chiral symmetry and density wave in quark matter. Phys. Rev. D 71, 114006 (2005). doi:10.1103/PhysRevD.71.114006

    Article  ADS  Google Scholar 

  34. J.L. Noronha, I.A. Shovkovy, Color-flavor locked superconductor in a magnetic field. Phys. Rev. D 76, 105030 (2007). doi:10.1103/PhysRevD.76.105030. Erratum: doi:10.1103/PhysRevD.86.049901

    Article  ADS  Google Scholar 

  35. H. Ooguri, M. Oshikawa, Instability in magnetic materials with dynamical axion field. Phys. Rev. Lett. 108, 161803 (2012). doi:10.1103/PhysRevLett.108.161803

    Article  ADS  Google Scholar 

  36. H. Primakoff, Photoproduction of neutral mesons in nuclear electric fields and the mean life of the neutral meson. Phys. Rev. 81, 899 (1951). doi:10.1103/PhysRev.81.899

    Article  ADS  Google Scholar 

  37. G. Raffelt, L. Stodolsky, Mixing of the photon with low mass particles. Phys. Rev. D 37, 1237 (1988). doi:10.1103/PhysRevD.37.1237

    Article  ADS  Google Scholar 

  38. A. Rebhan, A. Schmitt, S.A. Stricker, Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model. J. High Energy Phys. 1001, 026 (2010). doi:10.1007/JHEP01(2010)026

    Article  ADS  Google Scholar 

  39. V. Rubakov, On chiral magnetic effect and holography (2010)

    Google Scholar 

  40. B.M. Schechter, Yang-Mills theory on the hypertorus. Phys. Rev. D 16, 3015 (1977). doi:10.1103/PhysRevD.16.3015

    Article  MathSciNet  ADS  Google Scholar 

  41. V. Schon, M. Thies, 2-D model field theories at finite temperature and density (2000)

    Google Scholar 

  42. J.S. Schwinger, On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951). doi:10.1103/PhysRev.82.664

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. P. Sikivie, Experimental tests of the invisible axion. Phys. Rev. Lett. 51, 1415 (1983). doi:10.1103/PhysRevLett.51.1415

    Article  ADS  Google Scholar 

  44. D. Son, M. Stephanov, Axial anomaly and magnetism of nuclear and quark matter. Phys. Rev. D 77, 014021 (2008). doi:10.1103/PhysRevD.77.014021

    Article  ADS  Google Scholar 

  45. D.T. Son, N. Yamamoto, Berry curvature, triangle anomalies, and chiral magnetic effect in Fermi liquids. Phys. Rev. Lett. 109, 181602 (2012). doi:10.1103/PhysRevLett.109.181602

    Article  ADS  Google Scholar 

  46. M. Stephanov, Y. Yin, Chiral kinetic theory. Phys. Rev. Lett. 109, 162001 (2012). doi:10.1103/PhysRevLett.109.162001

    Article  ADS  Google Scholar 

  47. A. Vilenkin, Equilibrium parity violating current in a magnetic field. Phys. Rev. D 22, 3080–3084 (1980). doi:10.1103/PhysRevD.22.3080

    Article  ADS  Google Scholar 

  48. A. Yamamoto, Chiral magnetic effect in lattice QCD with a chiral chemical potential. Phys. Rev. Lett. 107, 031601 (2011). doi:10.1103/PhysRevLett.107.031601

    Article  ADS  Google Scholar 

  49. H.U. Yee, Holographic chiral magnetic conductivity. J. High Energy Phys. 0911, 085 (2009). doi:10.1088/1126-6708/2009/11/085

    Article  MathSciNet  ADS  Google Scholar 

  50. I. Zahed, Anomalous chiral Fermi surface. Phys. Rev. Lett. 109, 091603 (2012). doi:10.1103/PhysRevLett.109.091603

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to express his sincere thanks to his collaborators, Dima Kharzeev, Kazuya Mameda, and Harmen Warringa. The contents of this article are based on the fruitful collaboration with them. Especially, this article is dedicated to Harmen Warringa, who inspired me enough to initiate my working on the Chiral Magnetic Effect. Harmen’s contribution to physics of the Chiral Magnetic Effect should be memorable as long as the CME-related physics is of our interest. The author is also grateful to Tigran Kalaydzhyan, Dima Kharzeev, Toni Rebhan, Mikhail Shaposhnikov, Igor Shovkovy for useful comments on this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Fukushima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fukushima, K. (2013). Views of the Chiral Magnetic Effect. In: Kharzeev, D., Landsteiner, K., Schmitt, A., Yee, HU. (eds) Strongly Interacting Matter in Magnetic Fields. Lecture Notes in Physics, vol 871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37305-3_9

Download citation

Publish with us

Policies and ethics