Skip to main content

-Odd Fluctuations in Heavy Ion Collisions. Deformed QCD as a Toy Model

  • Chapter
Strongly Interacting Matter in Magnetic Fields

Part of the book series: Lecture Notes in Physics ((LNP,volume 871))

Abstract

We study the local violation of and invariance in heavy ion collisions as observed at RHIC and LHC using a simple “deformed QCD” model. This model is a weakly coupled gauge theory, which however has all the relevant crucial elements allowing us to study difficult and nontrivial questions which are known to be present in real strongly coupled QCD. Essentially, we want to understand the physics of long range order in form of coherent low dimensional vacuum configurations observed in Monte Carlo lattice simulations. Apparently precisely such kind of configurations are responsible for sufficiently strong intensity of asymmetries observed in heavy ion collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If the asymmetry \(\dot{\theta}_{\mathrm{ind}}\sim (\mu_{L}-\mu_{R})\) is build in as a result of weak interactions, the parameter \(\dot {\theta}_{\mathrm{ind}}\ll \varLambda _{\mathrm {QCD}}\) is obviously very small, and the effective Lagrangian approach represented by formulae (8.2) and (8.11) makes perfect sense. In particular, it has been argued in [28, 29] that the induced current (8.6) may have important applications for physics of neutron stars when \(\dot{\theta}_{\mathrm{ind}}\sim(\mu_{L}-\mu_{R})\) is small, but does not vanish as a result of weak β decays.

  2. 2.

    There are many different types of the domain walls which are supported by the Lagrangian (8.42). We leave this problem of classification of the DWs for a future study. In this work we concentrate on a simplest possible case with N=2 to demonstrate few generic features of the system.

  3. 3.

    A simplest intuitive way to understand the qualitative behaviour of the system (8.47) is to use a mechanical analogy as suggested in [41] when variable z is replaced by time, while the fields (η′,χ) can be thought as coordinates of two particles moving in one dimension with interaction determined by the potential term from (8.45).

  4. 4.

    The crucial difference with [67] is of course that the solutions for the system of the fields (η′,χ) considered here are regular functions everywhere, while solution in Ref. [67] had a cusp singularity as a result of integrating out heavy fields played by the χ field in present “deformed QCD” model. Interpretations of these solutions in these two cases are also very different as we interpret the corresponding configurations as the transitions describing the tunnelling processes in Euclidean space-time rather than real static DW in Minkowski space-time as we mentioned above.

  5. 5.

    Not to be confused with gluon field from (8.25), (8.27).

References

  1. S.A. Voloshin, Phys. Rev. C 70, 057901 (2004). arXiv:hep-ph/0406311

    Article  ADS  Google Scholar 

  2. I.V. Selyuzhenkov (STAR Collaboration) Rom. Rep. Phys. 58, 049 (2006). arXiv:nucl-ex/0510069

    Google Scholar 

  3. S.A. Voloshin (STAR Collaboration), arXiv:0806.0029 [nucl-ex]

  4. S.A. Voloshin, arXiv:1006.1020 [nucl-th]

  5. B.I. Abelev et al. (STAR Collaboration), Phys. Rev. Lett. 103, 251601 (2009). arXiv:0909.1739 [nucl-ex]

    Article  ADS  Google Scholar 

  6. N.N. Ajitanand, S. Esumi, R.A. Lacey (PHENIX Collaboration), P- and CP-odd effects in hot and dense matter, in Proc. of the RBRC Workshops, vol. 96 (2010)

    Google Scholar 

  7. B. Mohanty et al. (STAR Collaboration), arXiv:1106.5902 [nucl-ex]

  8. B.I. Abelev et al. (STAR Collaboration), Phys. Rev. C 81, 054908 (2010). arXiv:0909.1717 [nucl-ex]

    Article  ADS  Google Scholar 

  9. P. Christakoglou (ALICE Collaboration), J. Phys. G 38, 124165 (2011). arXiv:1106.2826 [nucl-ex]

    Article  ADS  Google Scholar 

  10. I. Selyuzhenkov (ALICE Collaboration), arXiv:1111.1875 [nucl-ex]

  11. I. Selyuzhenkov (ALICE Collaboration). arXiv:1203.5230 [nucl-ex]

  12. B. Abelev et al. (ALICE Collaboration), arXiv:1207.0900 [nucl-ex]

  13. D. Kharzeev, Phys. Lett. B 633, 260 (2006). arXiv:hep-ph/0406125

    Article  ADS  Google Scholar 

  14. D. Kharzeev, A. Zhitnitsky, Nucl. Phys. A 797, 67 (2007). arXiv:0706.1026 [hep-ph]

    Article  ADS  Google Scholar 

  15. D. Kharzeev, R.D. Pisarski, M.H.G. Tytgat, Phys. Rev. Lett. 81, 512 (1998). arXiv:hep-ph/9804221

    Article  ADS  Google Scholar 

  16. D. Kharzeev, R.D. Pisarski, Phys. Rev. D 61, 111901 (2000). arXiv:hep-ph/9906401

    Article  ADS  Google Scholar 

  17. K. Buckley, T. Fugleberg, A. Zhitnitsky, Phys. Rev. Lett. 84, 4814 (2000). arXiv:hep-ph/9910229

    Article  ADS  Google Scholar 

  18. K. Buckley, T. Fugleberg, A. Zhitnitsky, Phys. Rev. C 63, 034602 (2001). arXiv:hep-ph/0006057

    Article  ADS  Google Scholar 

  19. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A 803, 227 (2008). arXiv:0711.0950 [hep-ph]

    Article  ADS  Google Scholar 

  20. K. Fukushima, D.E. Kharzeev, H.J. Warringa, Phys. Rev. D 78, 074033 (2008). arXiv:0808.3382 [hep-ph]

    Article  ADS  Google Scholar 

  21. D.E. Kharzeev, Ann. Phys. 325, 205 (2010). arXiv:0911.3715 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  22. P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya, M.I. Polikarpov, Phys. Rev. D 80, 054503 (2009). arXiv:0907.0494 [hep-lat]

    Article  ADS  Google Scholar 

  23. M. Abramczyk, T. Blum, G. Petropoulos, R. Zhou, PoS LAT2009, 181 (2009). arXiv:0911.1348 [hep-lat]

    Google Scholar 

  24. A. Vilenkin, Phys. Rev. D 20, 1807 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  25. A. Vilenkin, Phys. Rev. D 22, 3067 (1980)

    Article  ADS  Google Scholar 

  26. A. Vilenkin, Phys. Rev. D 22, 3080 (1980)

    Article  ADS  Google Scholar 

  27. A.Yu. Alekseev, V.V. Cheianov, J. Fröhlich, Phys. Rev. Lett. 81, 3503 (1998)

    Article  ADS  Google Scholar 

  28. J. Charbonneau, A. Zhitnitsky, Phys. Rev. C 76, 015801 (2007). arXiv:astro-ph/0701308

    Article  ADS  Google Scholar 

  29. J. Charbonneau, A. Zhitnitsky, JCAP 1008, 010 (2010). arXiv:0903.4450 [astro-ph.HE]

    Article  ADS  Google Scholar 

  30. D.T. Son, A.R. Zhitnitsky, Phys. Rev. D 70, 074018 (2004). arXiv:hep-ph/0405216

    Article  ADS  Google Scholar 

  31. M.A. Metlitski, A.R. Zhitnitsky, Phys. Rev. D 72, 045011 (2005). arXiv:hep-ph/0505072

    Article  ADS  Google Scholar 

  32. G. Lifschytz, M. Lippert, Phys. Rev. D 80, 066005 (2009). 0904.4772

    Article  ADS  Google Scholar 

  33. H.U. Yee, J. High Energy Phys. 0911, 085 (2009). arXiv:0908.4189 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  34. A. Rebhan, A. Schmitt, S.A. Stricker, J. High Energy Phys. 1001, 026 (2010). arXiv:0909.4782 [hep-th]

    Article  ADS  Google Scholar 

  35. A. Gorsky, P.N.. Kopnin, A.V. ZayakinStricker, Phys. Rev. D 83, 014023 (2011). arXiv:1003.2293 [hep-ph]

    Article  ADS  Google Scholar 

  36. A. Gynther, K. Landsteiner, F. Pena-Benitez, A. Rebhan, J. High Energy Phys. 1102, 110 (2011). arXiv:1005.2587 [hep-th]

    Article  ADS  Google Scholar 

  37. V.A. Rubakov, arXiv:1005.1888 [hep-ph]

  38. L. Brits, J. Charbonneau, Phys. Rev. D 83, 126013 (2011). arXiv:1009.4230 [hep-th]

    Article  ADS  Google Scholar 

  39. D.E. Kharzeev, arXiv:1107.4004 [hep-ph]

  40. M. Asakawa, A. Majumder, B. Muller, Phys. Rev. C 81, 064912 (2010). arXiv:1003.2436 [hep-ph]

    Article  ADS  Google Scholar 

  41. M.C. Huang, P. Sikivie, Phys. Rev. D 32, 1560 (1985)

    Article  ADS  Google Scholar 

  42. D.E. Kharzeev, D.T. Son, Phys. Rev. Lett. 106, 062301 (2011). arXiv:1010.0038 [hep-ph]

    Article  ADS  Google Scholar 

  43. I. Horvath, S.J. Dong, T. Draper, F.X. Lee, K.F. Liu, N. Mathur, H.B. Thacker, J.B. Zhang, Phys. Rev. D 68, 114505 (2003). hep-lat/0302009

    Article  ADS  Google Scholar 

  44. I. Horvath, A. Alexandru, J.B. Zhang, Y. Chen, S.J. Dong, T. Draper, F.X. Lee, K.F. Liu et al., Phys. Lett. B 612, 21–28 (2005). hep-lat/0501025

    Article  ADS  Google Scholar 

  45. I. Horvath, A. Alexandru, J.B. Zhang, Y. Chen, S.J. Dong, T. Draper, K.F. Liu, N. Mathur et al., Phys. Lett. B 617, 49–59 (2005). hep-lat/0504005

    Article  ADS  Google Scholar 

  46. A. Alexandru, I. Horvath, J.-b. Zhang, Phys. Rev. D 72, 034506 (2005). hep-lat/0506018

    Article  ADS  Google Scholar 

  47. E.-M. Ilgenfritz, K. Koller, Y. Koma, G. Schierholz, T. Streuer, V. Weinberg, Phys. Rev. D 76, 034506 (2007). arXiv:0705.0018 [hep-lat]

    Article  ADS  Google Scholar 

  48. E.-M. Ilgenfritz, D. Leinweber, P. Moran, K. Koller, G. Schierholz, V. Weinberg, Phys. Rev. D 77, 074502 (2008) [Erratum. Phys. Rev. D 77, 099902 (2008)]. arXiv:0801.1725 [hep-lat]

    Article  ADS  Google Scholar 

  49. F. Bruckmann, F. Gruber, N. Cundy, A. Schafer, T. Lippert, Phys. Lett. B 707, 278 (2012). arXiv:1107.0897 [hep-lat]

    Article  ADS  Google Scholar 

  50. A.V. Kovalenko, M.I. Polikarpov, S.N. Syritsyn, V.I. Zakharov, Phys. Lett. B 613, 52 (2005). hep-lat/0408014

    Article  ADS  Google Scholar 

  51. P.V. Buividovich, T. Kalaydzhyan, M.I. Polikarpov, arXiv:1111.6733 [hep-lat]

  52. S. Ahmad, J.T. Lenaghan, H.B. Thacker, Phys. Rev. D 72, 114511 (2005). hep-lat/0509066

    Article  ADS  Google Scholar 

  53. A. Gorsky, V. Zakharov, Phys. Rev. D 77, 045017 (2008). arXiv:0707.1284 [hep-th]

    Article  ADS  Google Scholar 

  54. A.S. Gorsky, V.I. Zakharov, A.R. Zhitnitsky, Phys. Rev. D 79, 106003 (2009). arXiv:0902.1842 [hep-ph]

    Article  ADS  Google Scholar 

  55. A.R. Zhitnitsky, Phys. Rev. D 86, 045026 (2012). arXiv:1112.3365 [hep-ph]

    Article  ADS  Google Scholar 

  56. E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998). arXiv:hep-th/9803131

    MathSciNet  MATH  Google Scholar 

  57. A. Parnachev, A.R. Zhitnitsky, Phys. Rev. D 78, 125002 (2008). arXiv:0806.1736 [hep-ph]

    Article  ADS  Google Scholar 

  58. E. Thomas, A.R. Zhitnitsky, Phys. Rev. D 85, 044039 (2012). arXiv:1109.2608 [hep-th]

    Article  ADS  Google Scholar 

  59. E. Thomas, A.R. Zhitnitsky, Phys. Rev. D 86, 065029 (2012). arXiv:1203.6073 [hep-ph]

    Article  ADS  Google Scholar 

  60. M. Ünsal, L.G. Yaffe, Phys. Rev. D 78, 065035 (2008). arXiv:0803.0344 [hep-th]

    Article  ADS  Google Scholar 

  61. E. Witten, Ann. Phys. 128, 363 (1980)

    Article  ADS  Google Scholar 

  62. I.E. Halperin, A. Zhitnitsky, Phys. Rev. D 58, 054016 (1998). hep-ph/9711398

    Article  ADS  Google Scholar 

  63. E. Witten, Phys. Rev. Lett. 81, 2862 (1998). arXiv:hep-th/9807109

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. E. Thomas, A.R. Zhitnitsky, Phys. Rev. D 87, 085027 (2013). arXiv:1208.2030 [hep-ph]

    Article  ADS  Google Scholar 

  65. A.V. Smilga, Phys. Rep. 291, 1–106 (1997)

    Article  ADS  Google Scholar 

  66. K. Fukushima, J. Phys. G 39, 013101 (2012). arXiv:1108.2939 [hep-ph]

    Article  ADS  Google Scholar 

  67. M.M. Forbes, A.R. Zhitnitsky, J. High Energy Phys. 0110, 013 (2001). hep-ph/0008315

    Article  ADS  Google Scholar 

  68. A. Vilenkin, A.E. Everett, Phys. Rev. Lett. 48, 1867 (1982)

    Article  ADS  Google Scholar 

  69. C. Hagmann, S. Chang, P. Sikivie, Phys. Rev. D 63, 125018 (2001). hep-ph/0012361

    Article  ADS  Google Scholar 

  70. D.T. Son, M.A. Stephanov, A.R. Zhitnitsky, Phys. Rev. Lett. 86, 3955 (2001). hep-ph/0012041

    Article  ADS  Google Scholar 

  71. A.M. Polyakov, Nucl. Phys. B 120, 429 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  72. A.R. Zhitnitsky, Nucl. Phys. A 897, 93–108 (2013). arXiv:1208.2697 [hep-ph]

    Article  ADS  Google Scholar 

  73. A.R. Zhitnitsky, Nucl. Phys. A 853, 135–163 (2011). arXiv:1008.3598 [nucl-th]

    Article  ADS  Google Scholar 

  74. A.R. Zhitnitsky, Nucl. Phys. A 886, 17 (2012). arXiv:1201.2665 [hep-ph]

    Article  ADS  Google Scholar 

  75. P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya, M.I. Polikarpov, Phys. Rev. D 81, 036007 (2010). arXiv:0909.2350 [hep-ph]

    Article  ADS  Google Scholar 

  76. P.V. Buividovich, M.N. Chernodub, D.E. Kharzeev, T. Kalaydzhyan, E.V. Luschevskaya, M.I. Polikarpov, Phys. Rev. Lett. 105, 132001 (2010). arXiv:1003.2180 [hep-lat]

    Article  ADS  Google Scholar 

  77. T. Blum, J. Phys. Conf. Ser. 180, 012066 (2009). arXiv:0908.0937 [hep-lat]

    Article  ADS  Google Scholar 

  78. G. Basar, D. Kharzeev, H.-U. Yee, A. Zhitnitsky, Contact term and its holographic description in QCD (to appear)

    Google Scholar 

Download references

Acknowledgements

I am thankful to Gokce Basar, Dima Kharzeev, Ho-Ung Yee, Edward Shuryak and other participants of the workshop “P-and CP-odd effects in hot and dense matter”, Brookhaven, June, 2012, for useful and stimulating discussions related to the subject of the present work. This research was supported in part by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel R. Zhitnitsky .

Editor information

Editors and Affiliations

Appendix

Appendix

The goal here is to estimate the life time of the DW studied in Sect. 8.5. These DW should be viewed as configurations which describe tunnelling processes, similar to instantons. In addition, these objects may decay themselves as a result of internal dynamics, similar to static (in Minkowski space) configurations studied previously [6770].

The decay mechanism is due to a tunnelling process which creates a hole in the domain wall which connects the χ=0 domain on one side of the wall to the χ=2π domain on the other, see (8.36). Passing through the hole, the fields remain in the ground state. This lowers the energy of the configuration over that where the hole was filled by the domain wall transition by an amount proportional to R 2 where R is the radius of the hole. The hole, however, must be surrounded by a string-like field configuration. This string represents an excitation in the heavy degrees of freedom and thus costs energy, however, this energy scales linearly as R. Thus, if a large enough hole can form, then it will be stable and the hole will expand and consume the wall. This process is commonly called quantum nucleation and is similar to the decay of a metastable wall bounded by strings, and we use a similar technique to estimate the tunnelling probability. The idea of the calculation was suggested in [68, 69] to estimate the decay rate in the so-called N=1 axion model. In QCD context similar estimations have been discussed for the η′ domain wall in large N QCD in [67] and for the η′ domain wall in high density QCD in [70].

If the radius of the nucleating hole is much greater than the wall thickness, we can use the thin-string and thin-wall approximation. (The critical radius R c will be estimated later and this approximation justified.) In this case, the action for the string and for the wall are proportional to the corresponding worldsheet areas

(8.63)

The first term is the energy cost of forming a string: α is the string tension and 2πRL is its worldsheet area. The second term is energy gain by the hole over the domain wall: σ is the wall tension and πR 2 L is its worldsheet volume. We should note that formula (8.63) replaces following, more familiar expression for the classical action which was used in many previous similar computations, see e.g. [67, 70]

(8.64)

Minimizing (8.63) with respect to R we find the critical radius R c and the action S 0

(8.65)

which replace more familiar expressions for the critical radius \(R_{c}=\frac{2\alpha}{\sigma} \) and classical action \(S_{0} (\mathbb {R}^{4})= \frac{16\pi\alpha^{3}}{3\sigma^{2}}\) from [67, 70].

Therefore, the semiclassical probability of this process is proportional to

(8.66)

where σ is the DW tension determined by (8.37), while α is the tension of the vortex line in the limit when the interaction term ∼ζ due to the monopole’s interaction in low energy description (8.35) is neglected and U(1) symmetry is restored. In this case the vortex line is a global string with logarithmically divergent tension

(8.67)

where \(R\sim m_{\sigma}^{-1}\) is a long-distance cutoff which is determined by the width of DW, while R coreL when low energy description breaks down. The vortex tension is dominated by the region outside the core, so our estimates for computing α to the logarithmic accuracy are justified. Furthermore, the critical radius can be estimated as

(8.68)

which shows that the nucleating hole ∼R c is marginally greater than the wall thickness \({\sim} m_{\sigma}^{-1}\) as logarithmic factor where is large parameter of the model, see (8.34). Therefore, our thin-string and thin-wall approximation is marginally justified.

As a result of our estimates (8.66), (8.37), (8.67) the final expression for the decay rate of the domain wall is proportional to

(8.69)

with γ being some numerical coefficient. The estimate (8.69) supports our claim that in deformed QCD model when weak coupling regime is enforced and the domain walls are stable objects and, therefore, our treatment of the DW in Sect. 8.5 is justified.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhitnitsky, A.R. (2013). -Odd Fluctuations in Heavy Ion Collisions. Deformed QCD as a Toy Model. In: Kharzeev, D., Landsteiner, K., Schmitt, A., Yee, HU. (eds) Strongly Interacting Matter in Magnetic Fields. Lecture Notes in Physics, vol 871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37305-3_8

Download citation

Publish with us

Policies and ethics