Abstract

This paper proposes DotPlot visualizations [1,8] for comparing and clustering malware. We describe how to process and customize the malware memory images to get robust and scalable visualizations. We demonstrate the effectiveness of the visualizations for analysing, comparing and clustering malware.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Foote, J.: Visualizing Music and Audio using Self-Similarity. In: ACM Multimedia (1999)Google Scholar
  2. 2.
    Li, P., Liu, L., Gao, D., Reiter, M.K.: On Challenges in Evaluating Malware Clustering. In: Jha, S., Sommer, R., Kreibich, C. (eds.) RAID 2010. LNCS, vol. 6307, pp. 238–255. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Maizel, J.V., Lenk, R.P.: Enhanced Graphic Matrix Analysis of Nucleic Acid and Protein Sequences. National Acad. of Science (1981)Google Scholar
  4. 4.
    Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B.S.: Malware Images: Visualization and Automatic Classification. In: VizSec (2011)Google Scholar
  5. 5.
    Panas, T.: Signature Visualization of Software Binaries. In: SoftVis (2008)Google Scholar
  6. 6.
    Quist, D.A., Liebrock, L.M.: Visualizing Compiled Executables for Malware Analysis. In: VizSec (2009)Google Scholar
  7. 7.
    Trinius, P., Holz, T., Gobel, J., Freiling, F.C.: Visual Analysis of Malware Behavior Using Treemaps and Thread Graphs. In: VizSec (2009)Google Scholar
  8. 8.
    Wu, Y., Yap, R.H.C., Halim, F.: Visualizing Windows System Traces. In: SoftVis (2010)Google Scholar
  9. 9.
    Ramnath, R., Sufatrio, Yap, R.H.C., Wu, Y.: WinResMon: A Tool for Discovering Software Dependencies, Configuration and Requirements in Windows. In: LISA (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yongzheng Wu
    • 1
  • Roland H. C. Yap
    • 2
  1. 1.Singapore University of Technology and DesignSingapore
  2. 2.School of ComputingNational University of SingaporeSingapore

Personalised recommendations