Evaluating the Impact of Syntax and Semantics on Emotion Recognition from Text

  • Gözde Özbal
  • Daniele Pighin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7817)


In this paper, we systematically analyze the effect of incorporating different levels of syntactic and semantic information on the accuracy of emotion recognition from text. We carry out the evaluation in a supervised learning framework, and employ tree kernel functions as an intuitive and effective way to generate different feature spaces based on structured representations of the input data. We compare three different formalisms to encode syntactic information enriched with semantic features. These features are obtained from hand-annotated resources as well as distributional models. For the experiments, we use three datasets annotated according to the same set of emotions. Our analysis indicates that shallow syntactic information can positively interact with semantic features. In addition, we show how the three datasets can hardly be combined to learn more robust models, due to inherent differences in the linguistic properties of the texts or in the annotation.


Emotion Recognition Semantic Feature Latent Semantic Analysis Emotion Category Fairy Tale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chaffar, S., Inkpen, D.: Using a heterogeneous dataset for emotion analysis in text. In: Butz, C., Lingras, P. (eds.) Canadian AI 2011. LNCS, vol. 6657, pp. 62–67. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Strapparava, C., Mihalcea, R.: Learning to identify emotions in text. In: SAC 2008: Proceedings of the ACM symposium on Applied computing, pp. 1556–1560. ACM, New York (2008)Google Scholar
  3. 3.
    Aman, S., Szpakowicz, S.: Using Roget’s thesaurus for fine-grained emotion recognition. In: Proceedings of IJCNLP, pp. 296–302 (2008)Google Scholar
  4. 4.
    Ekman, P.: Facial expression and emotion. American Psychologist 48, 384–392 (1993)CrossRefGoogle Scholar
  5. 5.
    Boser, B.E., Guyon, I., Vapnik, V.: A Training Algorithm for Optimal Margin Classifiers. In: Proceedings of the 5th Annual Workshop on Computational Learning Theory (1992)Google Scholar
  6. 6.
    Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience (1998)Google Scholar
  7. 7.
    Collins, M., Duffy, N.: New ranking algorithms for parsing and tagging: kernels over discrete structures, and the voted perceptron. In: Proceedings of ACL 2002, Stroudsburg, PA, USA, pp. 263–270 (2002)Google Scholar
  8. 8.
    Agarwal, A., Xie, B., Vovsha, I., Rambow, O., Passonneau, R.: Sentiment Analysis of Twitter Data. In: Proceedings of the Workshop on Language in Social Media, pp. 30–38. Association for Computational Linguistics (2011)Google Scholar
  9. 9.
    Strapparava, C., Valitutti, A.: WordNet-Affect: an affective extension of WordNet. In: Proceedings of LREC, vol. 4, pp. 1083–1086 (2004)Google Scholar
  10. 10.
    Esuli, A., Sebastiani, F.: Sentiwordnet: A publicly available lexical resource for opinion mining. In: Proceedings of LREC, pp. 417–422 (2006)Google Scholar
  11. 11.
    Aizerman, M., Braverman, E., Rozonoer, L.: Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control 25, 821–837 (1964)MathSciNetGoogle Scholar
  12. 12.
    Collins, M., Duffy, N.: Convolution kernels for natural language. In: Advances in Neural Information Processing Systems, vol. 14, pp. 625–632. MIT Press (2001)Google Scholar
  13. 13.
    Haussler, D.: Convolution kernels on discrete structures. Technical report, Dept. of Computer Science, University of California at Santa Cruz (1999)Google Scholar
  14. 14.
    Moschitti, A.: Efficient Convolution Kernels for Dependency and Constituent Syntactic Trees. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 318–329. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Moschitti, A., Quarteroni, S., Basili, R., Manandhar, S.: Exploiting Syntactic and Shallow Semantic Kernels for Question/Answer Classification. In: Proceedings of ACL 2007 (2007)Google Scholar
  16. 16.
    Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C., Scholkopf, B.: Text classification using string kernels. Journal of Machine Learning Research 2, 563–569 (2002)Google Scholar
  17. 17.
    Cancedda, N., Gaussier, E., Goutte, C., Renders, J.M.: Word sequence kernels. Journal of Machine Learning Research 3, 1059–1082 (2003)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Moschitti, A., Pighin, D., Basili, R.: Tree Kernels for Semantic Role Labeling. Computational Linguistics 34, 193–224 (2008)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Chaumartin, F.R.: Upar7: a knowledge-based system for headline sentiment tagging. In: Proceedings of SemEval 2007, pp. 422–425. Association for Computational Linguistics, Stroudsburg (2007)Google Scholar
  20. 20.
    Katz, P., Singleton, M., Wicentowski, R.: Swat-mp:the semeval-2007 systems for task 5 and task 14. In: Proceedings of the SemEval 2007, pp. 308–313. Association for Computational Linguistics, Prague (2007)Google Scholar
  21. 21.
    Kozareva, Z., Navarro, B., Vazquez, S., Montoyo, A.: Ua-zbsa: A headline emotion classification through web information. In: Proceedings of SemEval 2007, pp. 334–337. Association for Computational Linguistics, Prague (2007)Google Scholar
  22. 22.
    Das, D., Bandyopadhyay, S.: Identifying emotional expressions, intensities and sentence level emotion tags using a supervised framework. Emotion 1, 95–104 (2010)Google Scholar
  23. 23.
    Aman, S., Szpakowicz, S.: Identifying expressions of emotion in text. In: Matoušek, V., Mautner, P. (eds.) TSD 2007. LNCS (LNAI), vol. 4629, pp. 196–205. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Alm, E.C.O.: Affect in Text and Speech. PhD thesis, University of Illinois at Urbana-Champaign (2008)Google Scholar
  25. 25.
    Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In: Proceedings of the International Conference on New Methods in Language Processing, Manchester, UK (1994)Google Scholar
  26. 26.
    Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proceedings of ACL 2003, Stroudsburg, PA, USA, pp. 423–430 (2003)Google Scholar
  27. 27.
    Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T., Harshman, R.: Indexing by latent semantic analysis. Journal of the American Society for Information Science 41, 391–407 (1990)CrossRefGoogle Scholar
  28. 28.
    Moschitti, A.: Efficient convolution kernels for dependency and constituent syntactic trees. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 318–329. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  29. 29.
    Mohammad, S.M.: From once upon a time to happily ever after: Tracking emotions in mail and books. Decision Support Systems 53, 730–741 (2012)CrossRefGoogle Scholar
  30. 30.
    Mohammad, S.: Portable features for classifying emotional text. In: Proceedings of NAACL HLT 2012, Stroudsburg, PA, USA, pp. 587–591 (2012)Google Scholar
  31. 31.
    Bloehdorn, S., Basili, R., Cammisa, M., Moschitti, A.: Semantic Kernels for Text Classification based on Topological Measures of Feature Similarity. In: Proceedings of ICDM, Hong Kong (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gözde Özbal
    • 1
  • Daniele Pighin
    • 2
  1. 1.FBK-irstTrentoItaly
  2. 2.UPCBarcelonaSpain

Personalised recommendations