Skip to main content

Plant Growth-Promoting Rhizobacteria as Zinc Mobilizers: A Promising Approach for Cereals Biofortification

  • Chapter
  • First Online:
Bacteria in Agrobiology: Crop Productivity

Abstract

As cereal crops are the main source of micronutrients such as Zn, subsequently Zn-deficient food crops are responsible for causing hidden hunger and malnutrition in people living in developing countries. Moreover, crop plants such as wheat, rice, maize, and sorghum show reduced photosynthetic carbon metabolism due to Zn deficiency. Different approaches are in progress to improve the Zn insufficiency in cereal. Strategies for the improvement of the Zn contents of food crops like chemical fertilization, agronomic practices, and transgenic plants development appear to have potential; however, these engaged practices have increased the environmental pollution, high-cost, socioeconomic, and political issues. The use of plant growth-promoting rhizobacteria (PGPR) offers an attractive approach to substitute chemical fertilizer, pesticides, and supplements. In particular, in vivo trials of Zn-mobilizing PGPR result in cereal biofortification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abaid-Ullah M, Hassan MN, Nawaz MK, Hafeez FY (2010) Screening of zinc mobilizing strains from wheat (Triticum aestivum L.) rhizosphere. Proceedings of international science conference on “utilization of modern agriculture techniques in challenging environmental perspectives”. Azad Jammu and Kashmir University, Pakistan, p 390

    Google Scholar 

  • Abaid-Ullah M, Hassan MN, Nawaz MK, Hafeez FY (2011) Biofortification of wheat (Triticum aestivum L.) through Zn mobilizing PGPR. Proceedings of international science conference “prospects and challenges to sustainable agriculture”. Azad Jammu and Kashmir University, Pakistan, p 298

    Google Scholar 

  • Ahmad M (2007) Biochemical and molecular basis of phosphate and zinc mobilization by PGPR in rice. M. Phil Dissertation, NIBGE, Faisalabad

    Google Scholar 

  • Ahmad P, Wani AE, Saghir MD, Khan AE, Zaidi A (2008) Effect of metal-tolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil. Arch Environ Contam Toxicol 55:33–42

    Google Scholar 

  • Ahmed Amal MA, Ahmed G, Magda Mohamed H, TawfikIntegrated MM (2011) Effect of organic and biofertilizers on wheat productivity in new reclaimed sandy soil. Res J Agric Biol Sci 7(1):105–114

    Google Scholar 

  • Alloway BJ (1995) Heavy metals in soils, 2nd edn. Blackie Academic & Professional, London

    Google Scholar 

  • Alloway BJ (2004) Zinc in soils and crop nutrition. International Zinc Association (IZA) Publications, Brussels

    Google Scholar 

  • Alloway BJ (2008) Zinc in soils and plant nutrition. International zinc association (IZA) and IFA Brussels, Belgium and Paris, p 139

    Google Scholar 

  • Assunc AGL, Herrero E, Lin YF, Huettel B, Talukdar S, Smaczniak C, Immink RGH, Eldik MV, Fiers M, Schat H, Aarts MGM (2010) Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc Natl Acad Sci USA 107:10296–10301

    Google Scholar 

  • Badr Elham A, Ibrahim OM, El-Kramany MF (2009) Interaction effect of biological and organic fertilizers on yield and yield components of two wheat cultivars. Egypt J Agron 31(1):17–27

    Google Scholar 

  • Bahrani A, Pourreza J, Hagh Joo M (2010) Response of winter wheat to co-inoculation with Azotobacter and arbuscular mycorrhizal fungi (AMF) under different sources of nitrogen fertilizer. Am Eurasian J Sustain Agric 8(1):95–103

    CAS  Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability, 2nd edn. Wiley, New York

    Google Scholar 

  • Bashan Y (1998) Azospirillum plant growth-promoting strains are nonpathogenic on tomato, pepper, cotton, and wheat. Can J Microbiol 44:168–174

    CAS  Google Scholar 

  • Black RE, Lindsay HA, Bhutta ZA, Caulfield LE, De Onnis M, Ezzati M, Mathers C, Rivera J (2008) Maternal and child undernutrition: global and regional exposures and health consequences. Lancet 371:243–260

    PubMed  Google Scholar 

  • Bouis HE (2003) Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost? Proc Nutr Soc 62:403–411

    PubMed  Google Scholar 

  • Bouis HE, Welch RM (2010) Biofortification: a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci 50:20–32

    Google Scholar 

  • Broadley MR, White PJ, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173(4):677–702

    PubMed  CAS  Google Scholar 

  • Brown KH, Hambidge KM, Ranum P, Tyler V, The Zinc Fortification Working Group (2009) Zinc fortification of cereal flours: current recommendations and research needs. Food Nutr Bull 31:S62–S74

    Google Scholar 

  • Bunt JS, Rovira AD (1955) Microbiological studies of some subantarctic soils. J Soil Sci 6:119–128

    CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    PubMed  CAS  Google Scholar 

  • Burr TJ, Caesar AM, Schrolh N (1984) Beneficial plant bacteria. Crit Rev Plant Sci 2(Suppl 1):1–20

    Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic bio-fortification? Plant Soil 302:1–17

    CAS  Google Scholar 

  • Cakmak I (2009) Enrichment of fertilizers with zinc: an excellent investment for humanity and crop production in India. J Trace Elem Med Biol 23:281–289

    PubMed  CAS  Google Scholar 

  • Cakmak I, Pfeiffer WH, McClafferty B (2010) Biofortification of durum wheat with zinc and iron. Cereal Chem 87:10–20

    CAS  Google Scholar 

  • Calder PC, Jackson AA (2000) Under nutrition, infection and immune function. Nutr Rev 8:129–133

    Google Scholar 

  • Canadian UNICEF Committee (2006) Global child survival and health, p 67

    Google Scholar 

  • Chowdhury S, Meenakshi JV, Tomlins K, Owori C (2009) Are consumers willing to pay more for biofortified foods? Evidence from a field experiment in Uganda. HarvestPlus working paper 3. International Food Policy Research Institute, Washington

    Google Scholar 

  • Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37:1970–1974

    CAS  Google Scholar 

  • Davies NT (1980) Studies on the absorption of zinc by rat intestine. Br J Nutr 43:189–203

    PubMed  CAS  Google Scholar 

  • Di Simine CD, Sayer JA, Gadd GM (1998) Solubilization of zinc phosphate by strain of Pseudomonas fluorescens isolated from forest soil. Biol Fertil Soils 28:87–94

    Google Scholar 

  • FAO WHO (2002) Human vitamin and mineral requirements. Food and Agriculture Organization of the United Nations, Bangkok, Thailand. ISBN 1014–9228

    Google Scholar 

  • Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by bacterium isolated by the air environment of tannery. FEMS Microbiol Lett 213:1–6

    PubMed  CAS  Google Scholar 

  • Friedland AJ (1990) The movement of metals through soils and ecosystems. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC, Boca Raton, FL, pp 7–19

    Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    PubMed  CAS  Google Scholar 

  • Gibson RS, Ferguson EL (1998) Nutrition intervention strategies to combat zinc deficiency in developing countries. Nutr Res Rev 11:115–131

    PubMed  CAS  Google Scholar 

  • Giehl RFH, Meda AR, Wiren N (2009) Moving up, down, and everywhere: signaling of micronutrients in plants. Curr Opin Plant Biol 12:320–327

    PubMed  CAS  Google Scholar 

  • Gomez-Becerra HF, Yazici A, Ozturk L, Budak H, Peleg Z, Morgounov A, Fahima T, Saranga Y, Cakmak I (2010) Genetic variation and environmental stability of grain mineral nutrient concentrations in Triticum dicoccoides under five environments. Euphytica 171:39–52

    CAS  Google Scholar 

  • Gull M, Hafeez FY, Saleem M, Malik KA (2004) Phosphate-uptake and growth promotion of chickpea (Cicer arietinum L.) by co-inoculation of mineral phosphate solubilizing bacteria and a mixed rhizobial culture. Aust J Exp Agric 44(6):623–628

    CAS  Google Scholar 

  • Gupta AP (2005) Micronutrient status and fertilizer use scenario in India. J Trace Elem Med Biol 18:325–331

    PubMed  CAS  Google Scholar 

  • Gustin JL, Loureiro ME, Kim D, Na G, Tikhonova M, Salt DE (2009) MTP1-dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn hyper-accumulating plants. Plant J 57:1116–1127

    PubMed  CAS  Google Scholar 

  • Hacisalihoglu G, Kochian LV (2003) How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants. New Phytol 159:341–350

    CAS  Google Scholar 

  • Hafeez FY, Gull M (2009) Role of siderophores in plant disease suppression. In: Saghir MD, Zaidi A, Musarrat J (eds) Microbes in sustainable agriculture. Nova, Hauppauge, NY, pp 167–182

    Google Scholar 

  • Hafeez FY, Hassan MN (2011) Use of biotechnological approaches to explore PGPR. Curr Opin Biotechnol 22

    Google Scholar 

  • Hafeez FY, Hassan MN (2012) Utilization of plant associated rhizobacteria to improve plant nutrition and protection: a cost effective and ecofriendly strategy. In: Brebia CA (ed) Sustainability today. WIT press, Southampton, pp 231–238

    Google Scholar 

  • Hafeez FY, Naureen Z (2011) Biological control of sheath blight disease of rice by siderophore producing rhizobacterial strains and their role in efficient mobilization of micronutrients from soil. Curr Opin Biotechnol 22

    Google Scholar 

  • Hafeez FY, Hameed S, Ahmad T, Malik KA (2001) Competition between effective and less effective strains of Bradyrhizobium spp. for nodulation on Vigna radiata. Biol Fertil Soils 33:382–386

    Google Scholar 

  • Hafeez FY, Hameed S, Zaidi AH, Malik KA (2002) Biofertilizer for sustainable agriculture. In: Azam F, Iqbal MM, Inayatullah C, Malik KA (eds) Technologies for sustainable agriculture. NIAB, Faisalabad, pp 67–74

    Google Scholar 

  • Hafeez FY, Naeem F, Naeem R, Zaidi AH, Malik KA (2005) Symbiotic effectiveness and bacteriocin production by Rhizobium leguminosarum bv. viciae isolated from agriculture soils in Faisalabad. Environ Exp Bot 54:142–147

    CAS  Google Scholar 

  • Hafeez FY, Yasmin S, Ariani D, Naranchimeg D, Delgermaa B, Rahman M, Malik KA, Zafar Y (2006) Plant growth-promoting bacteria as biofertilizer. Agron Sustain Dev 26:143–150

    CAS  Google Scholar 

  • Hambidge KM, Krebs NF (2007) Zinc deficiency: a special challenge. J Nutr 137(4):1101

    PubMed  CAS  Google Scholar 

  • Hamid A, Ahmad N (2001) Paper at regional workshop on integrated plant nutrition system (IPNS): development and rural poverty alleviation, Bangkok, 18–21 Sept

    Google Scholar 

  • Han JL, Li YM, MaC Y (2006) Effect of zinc fertilization on accumulation and transportation of N, P, K and Zn after anthesis of wheat. Plant Nutr Fert Sci 12:313–320

    CAS  Google Scholar 

  • Hartikainen H (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Biol 18:309–318

    PubMed  CAS  Google Scholar 

  • HarvestPlus (2012) Breeding crops for better nutrition. Web page of HarvestPlus. International Food Policy Research Institute, Washington, DC. Available via http://www.harvestplus.org/content/zinc-wheat

  • Havlin JL, Beaton JD, Tisdale SL, Nelson WL (2005) Soil fertility and fertilizers. Pearson, Upper Saddle River, NJ, p 515

    Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Google Scholar 

  • He CQ, Tan GE, Liang X, Du W, Chen YL, Zhi GY (2010) Effect of Zn-tolerant bacterial strains on growth and Zn accumulation in Orychophragmus violaceus. Appl Soil Ecol 44:1–5

    Google Scholar 

  • Hershfinkel M (2006) Zn2+, a dynamic signaling molecule. In: Tamás MJ, Martinoia E (eds) Molecular biology of metal homeostasis and detoxification: from microbes to man. Springer, Heidelberg, pp 131–152

    Google Scholar 

  • Hirschi K (2008) Nutritional improvements in plants: time to bite on biofortified foods. Trends Plant Sci 13:459–462

    PubMed  CAS  Google Scholar 

  • Hotz C, Brown KH (2004) Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull 25:S91–S204

    Google Scholar 

  • Intawongse M, Dean JR (2006) Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract. Food Addit Contam 23:36–48

    PubMed  CAS  Google Scholar 

  • International Zinc Association IZA (2011) http://www.zinc.org/sustainability

  • Jacobs JL, Fasi AC, Ramette A, Smith JJ, Hammerschmidt R, Sundin GW (2008) Identification and onion pathogenicity of Burkholderia cepacia complex isolates from the onion rhizosphere and onion field soil. Appl Environ Microbiol 74:3121–3129

    PubMed  CAS  Google Scholar 

  • Jilani G, Akram A, Ali RM, Hafeez FY, Shamsi IH, Chaudhry AN, Chaudhry AG (2007) Enhancing crop growth, nutrients availability, economics and beneficial rhizosphere microflora through organic and biofertilizers. Ann Microbiol 57(2):177–183

    CAS  Google Scholar 

  • Johnson AAT, Kyriacou B, Calla-han DL, Carruthers L, Stangoulis J, Lombi E, Tester M (2011) Constitutive over expression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm. PLoS One 6:e24476. doi:10.1371/journal.pone.0024476

    PubMed  CAS  Google Scholar 

  • Kaewchai S, Soytong K, Hyde KD (2005) Mycofungicides and fungal biofertilizers. Fungal Divers 38:25–50

    Google Scholar 

  • Kauser MA, Hussain F, Ali S, Iqbal MM (2001) Zinc and Cu nutrition of two wheat varieties on a calcareous soil. Pak J Soil Sci 20:21–26

    Google Scholar 

  • Khalifa RKHM, Shaaban SHA, RAWIA A (2011) Effect of foliar application of zinc sulfate and boric acid on growth, yield and chemical constituents of iris plants. Ozean J Appl Sci 4(2):130–144

    Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    PubMed  CAS  Google Scholar 

  • Khan MA, Haq I, Hassan MN, Hafeez FY (2010) Effect of phosphate solubilizing strains PCMC-1 and PCMC-2 on maize crop. Oral presentation. In: 13th National soil science congress held at Serena, 24–26 Mar 2010

    Google Scholar 

  • Khoshgoftarmanesh AH, Schulin R, Chaney RL, Daneshbakhsh B, Afyuni M (2009) Micronutrient-efficient genotypes for crop yield and nutritional quality in sustainable agriculture. A review. Agron Sustain Dev 30:83–110

    Google Scholar 

  • King JC (2006) Zinc. In: Shils ME, Shike M (eds) Modern nutrition in health and disease, 10th edn. Lippincott Williams & Wilkins, Philadelphia, PA, pp 271–285

    Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogen bacteria, vol 2, pp 879–882

    Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7(2):39–43

    Google Scholar 

  • Knight B, Zhao FJ, McGrath SP, Shen ZG (1997) Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution. Plant Soil 197:71–78

    CAS  Google Scholar 

  • Kos B, Lestan D (2003) Induced phytoextraction/soil washing of lead using biodegradable chelate and permeable barriers. Environ Sci Technol 37:624–629

    PubMed  CAS  Google Scholar 

  • Kramer U, Clemens S (2006) Functions and homeostasis of zinc, copper, and nickel in plants, molecule. In: Tamas MJ, Martinoia E (eds) Molecular biology of metal homeostasis and detoxification: from microbes to man. Springer, Heidelberg, pp 216–271

    Google Scholar 

  • Kutman UB, Yildiz B, Cakmak I (2011) Improved nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat. J Cereal Sci 53:118–125

    CAS  Google Scholar 

  • Lee S, Persson DP, Hansen TH, Husted S, Schjoerring JK, Kim YS, Jeon US, Kim YK, Kakei Y, Masuda H, Nishizawa NK, An G (2011) Bio-available zinc in rice seeds is increased by activation tagging of nicotianamine synthase. Plant Biotechnol J 9:865–873

    PubMed  CAS  Google Scholar 

  • Lonnerdal IB (2000) Dietary factors influencing zinc absorption. J Nutr 130:1378–1387

    Google Scholar 

  • Ma G, Jin Y, Li Y, Zhai F, Kok FJ, Jacobsen E, Yang X (2008) Iron and zinc deficiencies in China: what is a feasible and cost-effective strategy? Public Health Nutr 11:632–638

    PubMed  Google Scholar 

  • Mahdi SS, Hassan GI, Samoon SA, Rather HA, Dar SA, Zehra B (2010a) Bio-fertilizers in organic agriculture. J Phytopathol 2(10):42–54

    Google Scholar 

  • Mahdi SS, Dar SA, Ahmad S, Hassan GI (2010b) Zinc availability – a major issue in agriculture. Res J Agric Sci 3(3):78–79

    Google Scholar 

  • Maheshwari DK, Kumar S, Maheshwari NK, Patel D, Saraf M (2012) Nutrient availability and management in the rhizosphere by microorganisms. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin, pp 301–326

    Google Scholar 

  • Metin TA, Medine GB, Ramazan CC, Taskin OF, Sahin D (2010) The effect of PGPR strain on wheat yield and quality parameters. Proceeding of world congress of soil science, soil solutions for a changing world, Brisbane, Australia, 1–6 Aug

    Google Scholar 

  • Monasterio I, Graham RD (2000) Breeding for trace minerals in wheat. Food Nutr Bull 21:392–396

    Google Scholar 

  • Monasterio JIO, Rojas NP, MengE PK, Trethowan R, Pena RJ (2007) Enhancing the mineral and vitamin content of wheat and maize through plant breeding. J Cereal Sci 46:293–307

    Google Scholar 

  • Naureen Z, Hafeez FY, Roberts MR (2009) Induction of systemic resistance against rice blast disease by PGPR isolated from the rhizosphere of rice. In: Hafeez FY, Malik KA, Zafar Y (eds) Microbial technologies for sustainable agriculture. Crystal press, Islamabad, p 269. ISBN 978-969-8189-14-3

    Google Scholar 

  • Oliveira AB, Nascimento CWA (2006) Formas de manganês e ferro em solos de referência de Pernambuco. Rev Bras Ciênc Solo 30(1):99–110

    Google Scholar 

  • Ordookhani K, Khavazi K, Moezzi A, Rejali F (2010) Influence of PGPR and AMFon antioxidant activity, lycopene and potassium contents in tomato. African J Agric Res 5(10):1108–1116

    Google Scholar 

  • Pahlvan-Rad MR, Pressaraki M (2009) Response of wheat plant to zinc, iron and manganese applications and uptake and concentration of zinc, iron and manganese in wheat grains. Commun Soil Sci Plant Anal 40:1322–1332

    Google Scholar 

  • Perfus-Barbeoch L (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548

    PubMed  CAS  Google Scholar 

  • Pfeiffer WH, McClafferty B (2007) Harvest plus: breeding crops for better nutrition. Crop Sci 47:88–105

    Google Scholar 

  • Piechalak A, Tomaszewska B, Baralkiewics D (2003) Enhancing phytoremediative ability of Pisum sativum by EDTA application. Phytochemistry 64:1239–1251

    PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Pelt JA, Verhagen BWM, Jurriaan T, Wees SCM, Léon-Kloosterziel KM, Loon LC (2003) Induced systemic resistance by plant growth-promoting rhizobacteria. Symbiosis 35(Suppl 1–3):39–54

    CAS  Google Scholar 

  • Plum LM, Rink L, Haase H (2010) The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7:1342–1365

    PubMed  CAS  Google Scholar 

  • Prasad R (2005) Rice wheat cropping system. Adv Agron 86:255–339

    CAS  Google Scholar 

  • Prasad AS (2008a) Zinc in human health: effect of zinc on immune cells. Mol Med 14(5–6):353

    PubMed  CAS  Google Scholar 

  • Prasad AS (2008b) Zinc deficiency. Brit Med J 326:409–410

    Google Scholar 

  • Raboy V (2002) Progress in breeding low phytate crops. J Nutr 132:503S–505S

    PubMed  Google Scholar 

  • Rajkumar M, Freitas H (2008) Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71:834–842

    PubMed  CAS  Google Scholar 

  • Ranjbar GA, Bahmaniar MA (2007) Effect of soil and foliar application of zinc fertilizer on yield and growth characteristic of bread wheat (Triticum aestivum L.) cultivars. Asian J Sci 6:1000–1005

    CAS  Google Scholar 

  • Reeves PG, Chaney RL (2008) Bioavailability as an issue in risk assessment and management of food cadmium: a review. Sci Total Environ 398:13–19

    PubMed  CAS  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 1–7

    Google Scholar 

  • Sahi SZ, Bryant NL, Sharma NC, Singh SR (2002) Characterization of a lead hyperaccumulator shrub, Sesbania drummondii. Environ Sci Technol 36:4676–4680

    PubMed  Google Scholar 

  • Saravanan VS, Madhaiyan M, Thangaraju M (2007a) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794–1798

    PubMed  CAS  Google Scholar 

  • Saravanan VS, Osborne J, Madhaiyan M, Mathew L, Chung J, Ahn K, Sa T (2007b) Zinc metal solubilisation by Gluconacetobacter diazotrophicus and induction of pleomorphic cells. J Microbiol Biotechnol 17(9):1477–1482

    PubMed  CAS  Google Scholar 

  • Saravanan VS, Kumar MR, Sa TM (2011) Microbial zinc solubilisation and their role on plants. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin, pp 47–63

    Google Scholar 

  • Seilsepour M (2006) Study of zinc effects on quantitative and qualitative traits of winter wheat in saline soil condition. Biaban/Desert 11:17–23

    Google Scholar 

  • Siddiqui ZA, Akhtar MS, Futai K (2008) Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht

    Google Scholar 

  • Sillanpaa M (1982) Micronutrients and the nutrient status of soils. A global study. FAO Soil Bulletin No. 48. FAO, Rome, Italy

    Google Scholar 

  • Silvera S, Ronan T (2001) Trace element and cancer risk. A review of the epidemiological evidences. Cancer Cause Control 18(1):7–27

    Google Scholar 

  • Smith P, Martino D, Cai Z (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B 363:789–813

    CAS  Google Scholar 

  • Stein AJ (2010) Global impacts of human mineral malnutrition. Plant Soil 335:133–154

    CAS  Google Scholar 

  • Tariq M, Hameed S, Malik KA, Hafeez FY (2007) Plant root associated bacteria for zinc mobilization in rice. Pak J Bot 39(1):245–253

    Google Scholar 

  • Trethowan RM (2007) Breeding wheat for high iron and zinc at CIMMYT: state of the art, challenges and future prospects. In: Proceedings of the seventh international wheat conference, Mar del Plata, Argentina

    Google Scholar 

  • Uauy C, Brevis JC, Dubcovsky J (2006) The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. J Exp Bot 57:2785–2794

    PubMed  CAS  Google Scholar 

  • Umashankari J, Sekar C (2011) Comparative evaluation of different bioformulations of PGPR cells on the enhancement of induced systemic resistance (ISR) in rice P. oryzae pathosystem under upland condition. Curr Bot 2(3):12–17

    CAS  Google Scholar 

  • United States National Research Council, Institute of Medicine (2000) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academies Press, Washington, DC, pp 442–455

    Google Scholar 

  • Vallee BL, Falchuk KH (1981) Zinc and gene expression. Philos Trans R Soc Lond B Biol Sci 294:185–197

    PubMed  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Impact of zinc tolerant plant growth promoting rhizobacteria on lentil grown in zinc amended soil. Agron Sustain Dev 28:449–455. doi:10.1051/agro-2007048

    Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Effect of metal tolerant plant growth promoting Rhizobium on the performance of pea grown in metal amended soil. Arch Environ Contam Toxicol 55:33–42

    PubMed  CAS  Google Scholar 

  • Waters BM, Uauy C, Dubcovsky J, Grusak MA (2009) Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc and nitrogen compounds from vegetative tissues to grain. J Exp Bot 60:4263–4274

    PubMed  CAS  Google Scholar 

  • Welch RM (2001) Impact of mineral nutrients in plants on human nutrition on a worldwide scale. In: Horst WJ et al (eds) Plant nutrition–food security and sustainability of agro-ecosystems. Kluwer, Dordrecht, pp 284–285

    Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a humane nutrition perspective. J Exp Bot 55:353–364

    PubMed  CAS  Google Scholar 

  • White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10:586–593

    PubMed  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in humane diets: iron zinc copper calcium magnesium selenium and iodine. New Phytol 182:49–84

    PubMed  CAS  Google Scholar 

  • White PJ, Broadley MR (2011) Physiological limits to zinc biofortification of edible crops. Front Plant Sci 2:1–11

    Google Scholar 

  • WHO (2002) The world health report: reducing risks, promoting healthy life. World Health Organization Geneva, Switzerland

    Google Scholar 

  • WHO (2004) Clinical management of acute diarrhea. World Health Organization Geneva, Switzerland

    Google Scholar 

  • Yang X, Huang J, Jiang Y, Zhang HS (2009) Cloning and functional identification of two members of the ZIP (Zrt, Irt-like protein) gene family in rice (Oryza sativa L.). Mol Biol Rep 36:281–287

    PubMed  CAS  Google Scholar 

  • Yao T, Yasmin S, Malik KA, Hafeez FY (2008) Potential role of Rhizobacteria isolated from North-western China for enhancing wheat and oat yield. J Agric Sci 146:49–56

    CAS  Google Scholar 

  • Yasmin S (2011) Characterization of growth promoting and bioantagonistic bacteria associated with rhizosphere of cotton and rice. NIBGE, Faisalabad

    Google Scholar 

  • Yasmin S, Bakar MAR, Malik KA, Hafeez FY (2004) Isolation, characterization and beneficial effects of rice associated PGPRs from Zanzibar soils. J Basic Microbiol 44:241–252

    PubMed  CAS  Google Scholar 

  • Zaidi A, Mohammad S (2006) Co-inoculation effects of phosphate solubilizing microorganisms and glomus fasciculatum on green gram-Bradyrhizobium symbiosis. Agric Sci 30:223–230

    CAS  Google Scholar 

  • Zhang Y, Song Q, Yan J, Tang J, Zhao R, Zhang Y, He Z, Zou C, Ortiz-Monasterio I (2010) Mineral element concentrations in grains of Chinese wheat cultivars. Euphytica 174:303–313

    Google Scholar 

  • Zhang YQ, Sun YX, Ye YL, Karim MR, Xue YF, Yan P, Meng QF, Cui ZL, Cakmak I, Zhang FS, Zou CQ (2011) Zinc biofortification of wheat through fertilizer applications in different locations of China. Field Crops Res 125:1–7

    Google Scholar 

  • Zhao FJ, McGrath SP (2009) Biofortification and phytoremediation. Curr Opin Plant Biol 12:373–380

    PubMed  CAS  Google Scholar 

  • Zhao A, Lu X, Chen Z, Tian X, Yang X (2011) Zinc fertilization methods on zinc absorption and translocation in wheat. J Agric Sci 3:28–35

    Google Scholar 

Download references

Acknowledgment

I am thankful to Dr. Muhammad Imran, Assistant Professor, CIIT, for assisting me in writing and correcting the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fauzia Yusuf Hafeez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hafeez, F.Y., Abaid-Ullah, M., Hassan, M.N. (2013). Plant Growth-Promoting Rhizobacteria as Zinc Mobilizers: A Promising Approach for Cereals Biofortification. In: Maheshwari, D., Saraf, M., Aeron, A. (eds) Bacteria in Agrobiology: Crop Productivity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37241-4_9

Download citation

Publish with us

Policies and ethics