Skip to main content

Endophytic Bacteria: A Biotechnological Potential in Agrobiology System

  • Chapter
  • First Online:

Abstract

Endophytes are microorganisms that inhabit the interior of plant tissues without causing harm to the host. This definition includes internal colonists with apparently neutral behavior as well as symbionts. It also includes bacteria that migrate back and forth between the surface and the inside of the plant during their endophytic phase. The utilization of endophytic bacteria for biotechnological purposes has increased recently, especially in pest and disease control and in plant growth promotion. Endophytic bacteria promote plant growth function in three different ways: they synthesize particular compounds for the plants, facilitate the uptake of certain nutrients from the soil, and control or prevent diseases (biological control). Growth promotion mediated by endophytic bacteria includes several mechanisms: the production of vital enzymes; the production of hormones such as auxin (indole acetic acid [IAA]); symbiotic nitrogen fixation; antagonism against phytopathogens caused by the production of siderophores, chitinases, or antibiotics; and the solubilization and mineralization of nutrients, particularly mineral phosphates. Exploitation of the interactions between endophytes and plants can promote plant health and play a significant role in low-input sustainable agriculture for both food and nonfood crops. An understanding of the mechanisms enabling these endophytic bacteria to interact with plants is essential to achieve the biotechnological potential of these microorganisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adachi K, Nakatani M, Mochila H (2002) Isolation of an endophytic diazotroph, Klebsiella oxytoca, from sweetpotato stems in Japan. Soil Sci Plant Nut 48:889–895

    Article  Google Scholar 

  • Adams PD, Kloepper JW (1996) Seed borne bacterial endophytes in different cotton cultivars. In: Abstract, 1996 annual meeting of American Phytopathological Society, p 97

    Google Scholar 

  • Alves S (1998) Controle Microbiano de Insetos. Editora Fundação de Estudos Agrários Luiz de Queiroz, Piracicaba, p 1163

    Google Scholar 

  • Andreote FD, Lacava PT, Gai CS, Araújo WL, Maccheroni W Jr, van Overbeek LS, van Elsas JD, Azevedo JL (2006) Model plants for studying the interaction between Methylobacterium mesophilicum and Xylella fastidiosa. Can J Microbiol 52:419–426

    Article  PubMed  CAS  Google Scholar 

  • Angêlo PCS, Nunes-Silva CG, Brigido MM, Azevedo JSN, Assunção EM, Sousa ARB, Patricio FJB, Rego MM, Peixoto JCC, Oliveira WP Jr, Freitas DV, Almeida ERP, Viana AMHA, Souza AFPN, Andrade EV, Acosta POA, Batista JS, Walter MEMT, Leomil L, Anjos DAS, Coimbra RCM, Barbosa MHN, Honda E, Pereira SS, Silva A, Pereira JO, Silva ML, Marins M, Holanda FJ, Abreu RMM, Pando SC, Goncalves JFC, Carvalho ML, Leal-Mesquita ERRBP, da Silveira MA, Batista WC, Atroch AL, Franca SC, Porto JIR, Schneider MPC, Astolfi-Filho S (2008) Guarana (Paullinia cupana var. sorbilis), an anciently consumed stimulant from the Amazon rain forest: the seeded-fruit transcriptome. Plant Cell 27:117–124

    Google Scholar 

  • Arachevaleta M, Bacon CW, Hoveland CS, Radcliffe DE (1989) Effect of the tall fescue endophyte on plant response to environmental stress. Agron J 81:83–90

    Article  Google Scholar 

  • Araújo WL, Saridakis HO, Barroso PAV, Aguilar-Vildoso CI, Azevedo JL (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47:229–236

    Article  PubMed  Google Scholar 

  • Araújo WL, Marcon J, Maccheroni W Jr, Elsas JDV, Vuurde JLV, Azevedo JL (2002) Diversity of endophytic bacterial populations and interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914

    Article  PubMed  CAS  Google Scholar 

  • Araújo WL, Lacava PT, Andreote FD, Azevedo JL (2008) Interaction between endophytes and plant host: biotechnological aspects. In: Ait Barka E, Clément C (eds) Plant-microbe interactions, vol 1. Research Signpost, Kerala, pp 1–21

    Google Scholar 

  • Arias OE, Gatti IM, Silva DM, Ruschel AP, Vose PB (1978) Primeiras observaciones al microscopio eletronico de bacterias fijadoras de N2 en la raiz de la cana de azucar (Saccharum officinarum L.). Tarrialba 28:203–207

    Google Scholar 

  • Assis SMP, Silveira EB, Mariano RLR, Menezes D (1998) Bactérias endofíticas – método de isolamento e potencial antagônico no controle da podridão negra do repolho. Summa Phytopathol 24:216–220

    Google Scholar 

  • Assumpção LC, Lacava PT, Dias ACF, Azevedo JL, Menten JOM (2009) Diversity and biotechnological potential of endophytic bacterial community of soybean seeds. Braz J Agric Res 44:503–510

    Google Scholar 

  • Azevedo JL, Araújo WL (2003) Genetically modified crops: environmental and human health concerns. Mutat Res 544:223–233

    Article  PubMed  CAS  Google Scholar 

  • Azevedo JL, Araújo WL (2007) Diversity and applications of endophytic fungi isolated from tropical plants. In: Ganguli BN, Deshmukh SK (eds) Fungi: multifaceted microbes. CRC, Boca Raton, pp 189–207

    Google Scholar 

  • Azevedo JL, Maccheroni W, Pereira JO, Araújo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electr J Biotechnol 3:40–65

    Google Scholar 

  • Bacon C, Hinton D (2006) Bacterial endophytes: the endophytic niche, its occupants, and its utility. In: Gnanamanickam S (ed) Plant-associated bacteria. Springer, Dordrecht, pp 155–194

    Chapter  Google Scholar 

  • Bacon CW, White JF Jr (2000) Microbial endophytes. Dekker, New York, p 487

    Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Bañelos G (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, pp 85–108

    Google Scholar 

  • Baldani VLD, Döbereiner J (1980) Host-plant especificity in infection of cereal with Azospirillum spp. Soil Biol Biochem 12:433–440

    Article  Google Scholar 

  • Baldani JI, Baldani VLD, Seldin L, Döbereiner J (1986) Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. Int J Syst Bacteriol 36:86–93

    Article  CAS  Google Scholar 

  • Baldani JI, Caruso L, Baldani VLD, Goi SR, Dobereiner J (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29:911–922

    Article  CAS  Google Scholar 

  • Baldani VLD, Baldani JI, Döbereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biol Fertil Soils 30:485–489

    Article  Google Scholar 

  • Baldani JI, Baldani VLD, Döbereiner J (2003) Genus Herbaspirillum. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of determinative bacteriology, 2nd edn. Springer, New York

    Google Scholar 

  • Bangera MG, Thomashow LS (1996) Characterization of a genomic locus required for synthesis of the antibiotic 2, 4-diacetylphloroglucinol by the biological control agent Pseudomonas fluorescens Q2-87. Mol Plant Microbe Interact 9:83–90

    Article  PubMed  CAS  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588

    Article  PubMed  CAS  Google Scholar 

  • Barboza-Corona JE, Nieto-Mazzocco E, Velázquez-Robledo R, Salcedo-Hernandez R, Bautista M, Jiménez B, Ibarra JE (2003) Cloning, sequencing, and expression of the chitinases gene chiA74 from Bacillus thuringiensis. Appl Environ Microbiol 69:1023–1029

    Article  PubMed  CAS  Google Scholar 

  • Barzanti R, Ozino F, Bazzicalupo M, Gabbrielli R, Galardi F, Gonnelli C, Mengoni A (2007) Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microb Ecol 53:306–316

    Article  PubMed  CAS  Google Scholar 

  • Bastian F, Rapparini F, Baraldi R, Piccoli P, Bottini R (1999) Inoculation with Acetobacter diazotrophicus increases glucose and fructose content in shoots of Sorghum bicolor (L.) Monech. Symbiosis 2:147–156

    Google Scholar 

  • Beattie GA, Lindow SE (1995) The secret life of foliar bacterial pathogens on leaves. Annu Rev Phytopathol 33:145–172

    Article  PubMed  CAS  Google Scholar 

  • Bell CR, Dickie GA, Harvey WLG, Chan JWYF (1995) Endophytic bacteria in grapevine. Can J Microbiol 41:46–53

    Article  CAS  Google Scholar 

  • Benhamou N, Kloepper JW, Tuzun S (1998) Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response. Planta 204:153–168

    Article  CAS  Google Scholar 

  • Bent E, Chanway CP (1998) The growth-promoting effects of a bacterial endophyte on lodgepole pine are partially inhibited by the presence of other rhizobacteria. Can J Microbiol 44:980–988

    Article  CAS  Google Scholar 

  • Beuchat LR, Ward TE, Pettigrew CA (2001) Comparison of chlorine and a prototype produce wash product for effectiveness in killing Salmonella and Escherichia coli O157:H7 on alfalfa seeds. J Food Prot 64:152–158

    PubMed  CAS  Google Scholar 

  • Bhattacharya D, Nagpure A, Gupta RK (2007) Bacterial chitinases: properties and potential. Crit Rev Biotechnol 27:21–28

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  PubMed  CAS  Google Scholar 

  • Blumer C, Haas D (2000) Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 173:170–177

    Article  PubMed  CAS  Google Scholar 

  • Boddey RM, Döbereiner J (1995) Nitrogen fixation associated with grasses and cereals recent progress and perspectives for the future. Fert Res 42:241–250

    Article  CAS  Google Scholar 

  • Boddey RM, Urquiaga S, Alves BJR, Reis V (2003) Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252:139–149

    Article  CAS  Google Scholar 

  • Boursnell JG (1950) The symbiotic seed-borne fungus in the Cistaceae. I. Distribution and function of the fungus in the seedling and in the tissues of the mature plant. Ann Bot 14:217–243

    Google Scholar 

  • Burton A (2006) Dispatches – pesticides may promote Parkinson’s disease. Front Ecol Environ 4:284–289

    Article  Google Scholar 

  • Caballero-Mellado J, Martínez-Aguilar L, Paredes-Valdez G, Estrada-de los Santos P (2004) Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species. Int J Syst Evol Microbiol 54:1165–1172

    Article  PubMed  CAS  Google Scholar 

  • Cao L, Qiu Z, You J, Tan H, Zhou S (2005) Isolation and characterization of endophytic streptomycete antagonists of Fusarium wilt pathogen from surface-sterilized banana roots. FEMS Microbiol Lett 247:147–152

    Article  PubMed  CAS  Google Scholar 

  • Castro-Gonzalez R, Martinez-Aguilar L, Ramirez-Trujillo A, Estrada-de los Santos P, Caballero-Mellado J (2011) High diversity of culturable Burkholderia species associated with sugarcane. Plant Soil 345:155–169

    Article  CAS  Google Scholar 

  • Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci USA 100:14555–14561

    Article  PubMed  CAS  Google Scholar 

  • Chanway CP (1997) Inoculation of tree roots with plant growth promoting soil bacteria: an emerging technology for reforestation. For Sci 43:99–112

    Google Scholar 

  • Chanway CP, Shishido M, Nairn J, Jungwirth S, Markham J, Xiao G, Holl FB (2000) Endophytic colonization and field response of hybrid spruce seedlings after inoculation with plant growth-promoting rhizobacteria. For Ecol Manage 133:81–88

    Article  Google Scholar 

  • Chelius MK, Triplett EW (2000) Immunolocalization of dinitrogenase are reductase produced by Klebsiella pneumoniae in association with Zea mays L. Appl Environ Microbiol 66:783–787

    Article  PubMed  CAS  Google Scholar 

  • Chelius MK, Triplett EW (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microbiol Ecol 41:252–263

    CAS  Google Scholar 

  • Cheplick GP, Clay K, Marks S (1989) Interactions between infection by endophytic fungi and nutrient limitation in the grasses Lolium perenne and Festuca arundinacea. New Phytol 111:89–97

    Article  Google Scholar 

  • Cheryl P, Glick B (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  Google Scholar 

  • Cho KM, Hong SY, Lee SM, Kim YH, Kahng GG, Lim YP, Kim H, Yun HD (2007) Endophytic bacterial communities in ginseng and their antifungal activity against pathogens. Microb Ecol 54:341–351

    Article  PubMed  CAS  Google Scholar 

  • Christodoulou E, Duffner F, Vorgias CE (2001) Overexpression, purification, and characterization of a thermostable chitinase (Chi40) from Streptomyces thermoviolaceus OPC-520. Protein Expr Purif 23:97–105

    Article  PubMed  CAS  Google Scholar 

  • Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37:1970–1974

    Article  CAS  Google Scholar 

  • Ciampi-Panno L, Fernandez C, Bustamante P, Andrade N, Ojeda S, Conteras A (1989) Biological control of bacterial wilt of potatoes caused by Pseudomonas solanacearum. Am Potato J 66:315–332

    Article  Google Scholar 

  • Cleland RE (1990) Auxin and cell elongation. In: Davies PJ (ed) Plant hormones and their role in plant growth and development. Kluwer Academic, Dordrecht, pp 132–148

    Google Scholar 

  • Cocolin L, Rantsiou K, Iacumin L, Cantoni C, Comi G (2002) Direct dentification in food samples of Listeria spp. and Listeria monocytogenes by molecular methods. Appl Environ Microbiol 68:6273–6282

    Article  PubMed  CAS  Google Scholar 

  • Comai L, Kosuge T (1980) Involvement of plasmid deoxyribonucleic acid in indoleacetic acid synthesis in Pseudomonas savastanoi. J Bacteriol 143:950–957

    PubMed  CAS  Google Scholar 

  • Cooley MB, Miller WG, Mandrell RE (2003) Colonization of Arabidopsis thaliana with Salmonella enterica and enterohemorrhagic Escherichia coli O157:H7 and competition by Enterobacter asburiae. Appl Environ Microbiol 69:4915–4926

    Article  PubMed  CAS  Google Scholar 

  • Coombs JT, Franco CMM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608

    Article  PubMed  CAS  Google Scholar 

  • Coombs JT, Michelsen PP, Franco CMM (2004) Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biol Control 29:359–366

    Article  Google Scholar 

  • Corpe WA (1985) A method for detecting methylotrophic bacteria on solid surfaces. J Microbiol Methods 3:215–221

    Article  Google Scholar 

  • Costa JM, Loper JE (1994) Characterization of siderophore production by the biological control agent Enterobacter cloacae. Mol Plant Microbe Interact 7:440–448

    Article  CAS  Google Scholar 

  • Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21:1–18

    Article  PubMed  Google Scholar 

  • Cottrell MT, Kirchman DL (2000) Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl Environ Microbiol 66:5116–5122

    Article  PubMed  CAS  Google Scholar 

  • Dias ACF, Costa FEC, Andreote FD, Lacava PT, Teixeira MA, Assumpção LC, Araújo WL, Azevedo JL, Melo IS (2009) Isolation of micro propagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion. World J Microbiol Biotechnol 25:189–195

    Article  CAS  Google Scholar 

  • Döbereiner J (1992) History and new perspective of diazotrophs in association with non-leguminous plants. Symbiosis 13:1–13

    Google Scholar 

  • Döbereiner J (1997) Biological nitrogen fixation in the tropics: social and economic contributions. Soil Biol Biochem 29:771–774

    Article  Google Scholar 

  • Döbereiner J, Ruschel AP (1958) Uma nova espécie de Beijerinkia. Ver Biol 1:261–272

    Google Scholar 

  • Döbereiner J, Urquiaga S (1992) Soil biology and sustainable agriculture. An Acad Bras Sci 84:127–133

    Google Scholar 

  • Döbereiner J, Baldani VLD, Baldani JI (1995) Como isolar e identificar bactérias diazotróficas de plantas não-leguminosas. Embrapa-SPI, Brasília, p 60

    Google Scholar 

  • Dong Z, Canny MJ, McCully ME, Roboredo MR, Cabadilla CF, Ortega E, Rodes R (1994) A nitrogen fixing endophyte of sugarcane stems. Plant Physiol 105:1139–1147

    PubMed  CAS  Google Scholar 

  • Dong Z, McCully ME, Canny MJ (1997) Does Acetobacter diazotrophicus live and move in the xylem of sugarcane? Anatomical and physiological data. Ann Bot 80:147–158

    Article  Google Scholar 

  • Dong YM, Iniguez AL, Ahmer BMM, Triplett EW (2003) Kinetics and strain specificity of rhizosphere and endophytic colonization by enteric bacteria on seedlings of Medicago sativa and Medicago truncatula. Appl Environ Microbiol 69:1783–1790

    Article  PubMed  CAS  Google Scholar 

  • Dos Reis FB, Reis VM, Urquiaga S, Döbereiner J (2000) Influence of nitrogen fertilisation on the population of diazotrophic bacteria Herbaspirillum spp. and Acetobacter diazotrophicus in sugarcane (Saccharum spp.). Plant Soil 219:153–159

    Article  Google Scholar 

  • Dourado MN, Ferreira A, Araújo WL, Azevedo JL, Lacava PT (2012) The diversity of endophytic methylotrophic bacteria in an oil-contaminated and an oil-free mangrove ecosystem and their tolerance to heavy metals. Biotechnol Res Int 2012:1–8

    Article  CAS  Google Scholar 

  • Duffy BK, Defago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438

    PubMed  CAS  Google Scholar 

  • Dunbar J, Takala S, Barns SM, Davis JA, Kuske CR (1999) Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl Environ Microbiol 65:1662–1669

    PubMed  CAS  Google Scholar 

  • Egener T, Hurek T, Reinhold-Hurek B (1999) Endophytic expression of nif genes of Azoarcus sp. strain BH72 in rice roots. Mol Plant Microbe Interact 12:813–819

    Article  CAS  Google Scholar 

  • Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minamisawa K (2000) Endophytic colonization and in planta nitrogen fixation by Herbaspirillum sp. isolated from rice species. Appl Environ Microbiol 67:5285–5293

    Article  Google Scholar 

  • El-Khawas H, Adachi K (1999) Identification and quantification of auxins in culture media of Azospirillum and Klebsiella and their effect on rice roots. Biol Fertil Soils 28:377–381

    Article  CAS  Google Scholar 

  • El-Tarabily KA (2003) An endophytic chitinase-producing isolate of Actinoplanes missouriensis, with potential for biological control of root rot of lupine caused by Plectosporium tabacinum. Aust J Bot 51:257–266

    Article  Google Scholar 

  • El-Tarabily KA, Nassar AH, Hardy GE, Sivasithamparam K (2009) Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J Appl Microbiol 106:13–26

    Article  PubMed  CAS  Google Scholar 

  • Estrada P, Mavingui P, Cournoyer B, Fontaine F, Balandreau J, Caballero-Mellado J (2002) A N2-fixing endophytic Burkholderia sp. associated with maize plants cultivated in Mexico. Can J Microbiol 48:285–294

    Article  PubMed  CAS  Google Scholar 

  • Etchegaray A, Silva-Stenico ME, Moon DH, Tsai SM (2004) In silico analysis of nonribosomal peptide synthetases of Xanthomonas axonopodis pv. citri: identification of putative siderophore and lipopeptide biosynthetic genes. Microbiol Res 159:425–437

    Article  PubMed  CAS  Google Scholar 

  • Fahey JW (1988) Endophytic bacteria for the delivery of agrochemicals to plants. In: Cutle HG (ed) Biologically active natural products. American Chemical Society, Washington, DC, pp 120–128

    Chapter  Google Scholar 

  • Fahey JW, Dimock MB, Tomasino SF, Taylor JM, Carlson PS (1991) Genetically engineered endophytes as biocontrol agents: a case study in industry. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 401–411

    Chapter  Google Scholar 

  • Feng Y, Shen D, Song W (2006) Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. J Appl Microbiol 100:938–945

    Article  PubMed  CAS  Google Scholar 

  • Ferreira A, Quecine MC, Lacava PT, Oda S, Azevedo JL, Araújo WL (2008) Diversity of endophytic bacteria from Eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans. FEMS Microbiol Lett 287:8–14

    Article  PubMed  CAS  Google Scholar 

  • Fisher PJ, Petrini O, Scott HML (1992) The distribution of some fungal and bacterial endophytes in maize (Zea mays L.). New Phytol 122:299–305

    Article  Google Scholar 

  • Flärdh K, Buttner MJ (2009) Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 7:36–49

    Article  PubMed  CAS  Google Scholar 

  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152

    Article  PubMed  CAS  Google Scholar 

  • Franco C, Michelsen P, Percy N, Conn V, Listiana E, Moll S, Loria R, Coombs J (2007) Actinobacterial endophytes for improved crop performance. Australas Plant Pathol 36:524–531

    Article  Google Scholar 

  • Frommel MI, Novak J, Lazarovits G (1991) Growth enhancement and developmental modification of in vitro potato (Solanum tuberosum ssp. tuberosum) as affected by nonfluorescent Pseudomonas sp. Plant Physiol 96:928–936

    Article  PubMed  CAS  Google Scholar 

  • Fuentes-Ramírez LE, Bustillos-Cristalles R, Tapia-Hernandez A, Jiménez-Salgado T, Wang ET, Martínez-Romero E, Caballero-Mellado J (2001) Novel nitrogen-fixing acetic acid bacteria Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov. associated with coffee plants. Int J Syst Evol Microbiol 51:1305–1314

    PubMed  Google Scholar 

  • Gai CS, Lacava PT, Quecine MC, Auriac MC, Lopes JRS, Araújo WL, Miller TA, Azevedo JL (2009) Transmission of Methylobacterium mesophilicum by Bucephalogonia xanthophis for paratransgenic control strategy of Citrus Variegated Chlorosis. J Microbiol 47:448–454

    Article  PubMed  Google Scholar 

  • Garbeva P, Van Overbeek LS, Van Vuurde JWL, Van Elsas JD (2001) Analysis of endophytic bacterial communities of potato by planting and denaturing gradient gel electrophoresis (DGGE) of 16s rDNA based PCR fragments. Microb Ecol 41:369–383

    PubMed  CAS  Google Scholar 

  • Germaine K, Keogh E, Garcia-Cabellos G, Borremans B, Van der Lelie D, Barac T, Oeyen L, Vangronsveld J, Moore FP, Moore ERB, Campbell TCD, Dowling DN (2004) Colonization of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol Ecol 48:109–118

    Article  PubMed  CAS  Google Scholar 

  • Gillis M, Kersters K, Hoste B, Janssen D, Kroppenstedt RM, Stephan MP, Teixera KRS, Döbereiner J, DeLey J (1989) Acetobacter diazotrophicus sp. nov., a nitrogen-fixing acetic acid bacterium associated with sugarcane. Int J Syst Bacteriol 39:361–364

    Article  Google Scholar 

  • Glass ADM (1989) Physiological mechanisms involved with genotypic differences in ion absorption and utilization. Hort Sci 24:559–564

    Google Scholar 

  • Glick B, Penrose D, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  PubMed  CAS  Google Scholar 

  • Govindarajan M, Balandreau J, Muthukumarasamy R, Revathi G, Lakshminarasimhan C (2006) Improved yield of micro-propagated sugarcane following inoculation by endophytic Burkholderia vietnamiensis. Plant Soil 280:239–252

    Article  CAS  Google Scholar 

  • Govindarajan M, Kwon SW, Weon HJ (2007) Isolation, molecular characterization and growth-promoting activities of endophytic sugarcane diazotroph Klebsiella sp. GR9. World J Microbiol Biotechnol 23:997–1006

    Article  CAS  Google Scholar 

  • Graciolli LA, Freitas JR, Ruschel AP (1983) Bactérias fixadoras de nitrogênio nas raízes, caules e folhas de cana-de-acúçar (Saccharum sp.). Rev Microbiol 14:191–196

    Google Scholar 

  • Gutierrez-Zamora ML, Martinez-Romero E (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J Biotechnol 91:117–126

    Article  PubMed  CAS  Google Scholar 

  • Gyaneshwar P, Naresh KG, Parekh LJ (1998) Cloning of mineral phosphate solubilizing genes from Synechocystis PCC 6803 P. Curr Sci 74:1097–1099

    CAS  Google Scholar 

  • Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B, Ladha JK (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol 183:634–645

    Article  Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    Article  CAS  Google Scholar 

  • Hagen G (1990) The control of gene expression by auxin. In: Davies PJ (ed) Plant hormones and their role in plant growth and development. Kluwer Academic, Dordrecht, pp 149–163

    Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Hartung JS, Beretta J, Brlansky RH, Spisso J, Lee RF (1994) Citrus variegated chlorosis bacterium: axenic culture, pathogenicity, and serological relationships with other strains of Xylella fastidiosa. Phytopathology 84:591–597

    Article  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Hegazi NA, Eid M, Farag RS, Monib M (1979) Asymbiotic N2-fixation in the rhizosphere of sugarcane planted under semi-arid conditions of Egypt. Rev Ecol Biol Soil 16:23–37

    CAS  Google Scholar 

  • Huang JS (1986) Ultrastructure of bacterial penetration in plants. Annu Rev Phytopathol 24:141–157

    Article  Google Scholar 

  • Hurek T, Handley LL, Reinhold-Hurek B, Piché Y (2002) Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol Plant Microbe Interact 15:233–242

    Article  PubMed  CAS  Google Scholar 

  • Hutcheson SW, Kosuge T (1985) Regulation of indole-3-acetic acid production in Pseudomonas syringae pv. savastanoi. Pseudomonas syringae pv. savastanoi. J Biol Chem 260:6281–6287

    PubMed  CAS  Google Scholar 

  • Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Microbiol Biotechnol 70:2667–2677

    CAS  Google Scholar 

  • Idris R, Kuffner M, Bodrossy L, Puschenreiter M, Monchy S, Wenzel WW, Sessitsch A (2006) Characterization of Ni tolerant methylobacteria associated with the hyperaccumulating plant Thlaspi goesingense and description of Methylobacterium goesingense sp. nov. Syst Appl Microbiol 29:634–644

    Article  PubMed  CAS  Google Scholar 

  • Iniguez AL, Dong Y, Triplett EW (2004) Nitrogen fixation in wheat provide by Klebsiella pneumoniae 342. Mol Plant Microbe Interact 17:1078–1085

    Article  PubMed  CAS  Google Scholar 

  • Iniguez AL, Dong Y, Carter HD, Ahmer BMM, Stone JM, Triplett EW (2005) Regulation of enteric endophytic bacterial colonization by plant defense. Mol Plant Microbe Interact 18:169–178

    Article  PubMed  CAS  Google Scholar 

  • Jalgaonwala RE, Mahajan RT (2011) A review: bacterial endophytes and their bioprospecting. J Pharm Res 4:795–799

    CAS  Google Scholar 

  • James EK, Olivares FL (1998) Infection and colonization of sugarcane and other graminaceous plants by endophytic diazotrophs. Crit Rev Plant Sci 17:77–119

    Article  Google Scholar 

  • James EK, Olivares FL, Baldani JI, Döbereiner J (1997) Herbaspirillum, an endophytic diazotroph colonizing vascular tissue in leaves of Sorghum bicolor L. Moench. J Exp Bot 48:785–797

    Article  CAS  Google Scholar 

  • James EK, Olivares FL, de Oliveira ALM, dos Reis FB, da Silva LG, Reia VM (2001) Further observations on the interaction between sugar cane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. J Exp Bot 52:747–760

    PubMed  CAS  Google Scholar 

  • James EK, Gyaneswar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PPM, Olivares FL, Ladha JK (2002) Infection and colonization of the rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant Microbe Interact 15:894–906

    Article  PubMed  CAS  Google Scholar 

  • Jiménez-Salgado T, Fuentes-Ramírez LE, Tapia-Hernández A, Mascarua- Esparza MA, Martínez-Romero E, Caballero-MEllado J (1997) Coffea arabica L., a new host plant for Acetobacter diazotrophicus and isolation of the nitrogen-fixing-acetobacteria. Appl Environ Microbiol 63:3676–3683

    PubMed  Google Scholar 

  • Kafur A, Khan AB (2011) Isolation of endophytic actinomycetes from Catharanthus roseus (L.) G. Don leaves and their antimicrobial activity. Iran J Biotechnol 9:302–306

    CAS  Google Scholar 

  • Kanvinde L, Sastry GRK (1990) Agrobacterium tumefaciens is a diazotrophic bacterium. Appl Environ Microbiol 56:2087–2092

    PubMed  CAS  Google Scholar 

  • Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1:48–58

    Google Scholar 

  • Kibe R, Sakamoto M, Yokota H, Ishikawa H, Aiba Y, Koga Y, Benno Y (2005) Movement and fixation of intestinal microbiota after administration of human feces to germfree mice. Appl Environ Microbiol 71:3171–3178

    Article  CAS  PubMed  Google Scholar 

  • Kim KJ, Yang YJ, Kim JG (2003) Purification and characterization of chitinase from Streptomyces sp. M-20. J Biochem Mol Biol 36:185–189

    Article  PubMed  CAS  Google Scholar 

  • Kirchhof G, Schloter M, Abmus B, Hartmann A (1997) Molecular microbial ecology approaches applied to diazotrophs associated with non-legumes. Soil Biol Biochem 29:853–862

    Article  CAS  Google Scholar 

  • Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial endophytes. Dekker, New York, pp 199–236

    Google Scholar 

  • Koga J, Adachi T, Hidaka H (1991) Molecular cloning of the gene for indolepyruvate decarboxylase from Enterobacter cloacae. Mol Gen Genet 226:10–16

    Article  PubMed  CAS  Google Scholar 

  • Kosuge T, Sanger M (1987) Indole acetic acid, its synthesis and regulation: basis for tumorigenicity in plant disease. Recent Adv Phytochem 20:147–161

    Google Scholar 

  • Kramer KJ, Muthukrishnan S (1997) Insect chitinases: molecular biology and potential use as biopesticides. Insect Biochem Mol Biol 27:887–900

    Article  CAS  PubMed  Google Scholar 

  • Krechel A, Faupel A, Hallmann J, Ulrich A, Berg G (2002) Potato associated bacteria and their antagonistic potential towards plant pathogenic fungi and the plant parasitic nematode Meloidogyne incognita (kofoid and white) chitwood. Can J Microbiol 48:772–786

    Article  CAS  PubMed  Google Scholar 

  • Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    Article  PubMed  CAS  Google Scholar 

  • Kuklinsky-Sobral J, Araújo WL, Mendes R, Pizzirani-Kleiner AA, Azevedo JL (2005) Isolation and characterization of endophytic bacteria from soybean (Glycine max) grown in soil treated with glyphosate herbicide. Plant Soil 273:91–99

    Article  CAS  Google Scholar 

  • Kumar BSD, Dube HC (1992) Seed bacterization with a fluorescent Pseudomonas for enhanced plant growth and yield and disease control. Soil Biol Biochem 26:539–542

    Article  Google Scholar 

  • Lacava PT, Araujo WL, Marcon J, Maccheroni W Jr, Azevedo JL (2004) Interaction between endophytic bacteria from citrus plants and the phytopathogenic bacteria Xylella fastidiosa, causal agent of citrus-variegated chlorosis. Lett Appl Microbiol 39:55–59

    Article  PubMed  CAS  Google Scholar 

  • Lacava PT, Li WB, Araújo WL, Azevedo JL, Hartung JS (2006) Rapid, specific and quantitative assays for the detection of endophytic bacterium Methylobacterium mesophilicum in inoculated plants. J Microbiol Methods 65:535–541

    Article  CAS  PubMed  Google Scholar 

  • Lacava PT, Araújo WL, Azevedo JL (2007a) Evaluation of endophytic colonization of Citrus sinensis and Catharanthus roseus seedlings by endophytic bacteria. J Microbiol 45:11–14

    PubMed  CAS  Google Scholar 

  • Lacava PT, Li WB, Araújo WL, Azevedo JL, Hartung JS (2007b) The endophyte Curtobacterium flaccumfaciens reduces symptoms caused by Xylella fastidiosa in Catharanthus roseus. J Microbiol 45:388–393

    PubMed  CAS  Google Scholar 

  • Lacava PT, Silva ME, Araújo WL, Simionato A, Carrilho E, Tsai SM, Azevedo JL (2008) Detection of siderophores in endophytic bacteria Methylobacterium spp. associated with Xylella fastidiosa subsp. pauca. Braz J Agric Res 43:521–528

    Google Scholar 

  • Lamb TG, Tonkyn DW, Kluepfel DA (1996) Movement of Pseudomonas aureofaciens from the rhizosphere to aerial plant tissue. Can J Microbiol 42:1112–1120

    Article  CAS  Google Scholar 

  • Lambert B, Joos H (1989) Fundamental aspects of rhizobacterial plant growth promotion research. Trends Biotechnol 7:215–219

    Article  Google Scholar 

  • Lampel JS, Canter GL, Dimock MB, Kelly JL, Anderson JJ, Uratani BB, Foulke JS Jr, Turner JT (1994) Integrative cloning, expression, and stability of the cryIA(c) gene from Bacillus thuringiensis subsp. kurstati in a recombinant strain of Clavibacter xyli subsp. cynodontis. Appl Environ Microbiol 60:501–508

    PubMed  CAS  Google Scholar 

  • Lebuhn M, Heulin T, Hartmann A (1997) Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from diferente proximity to plant roots. FEMS Microbiol Ecol 22:325–334

    Article  CAS  Google Scholar 

  • Lecuona RE (1996) Microorganismos patógenos empleados en el control microbiano de insectos plaga. Editora Lecuona, Castelar, p 338

    Google Scholar 

  • Lee S, Flores-Encarnacion M, Contreras-Zentalla M, GarciaFlores L, Escamilla JE, Kennedy C (2004) Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis genes. J Bacteriol 186:5384–5391

    Article  PubMed  CAS  Google Scholar 

  • Lee HS, Madhaiyan M, Kim CW, Choi SJ, Chung KY, Sa TM (2006) Physiological enhancement of early growth of rice seedlings (Oryza sativa L.) by production of phytohormone of N2-fixing methylotrophic isolates. Biol Fertil Soils 42:402–408

    Article  CAS  Google Scholar 

  • Li C-H, Zhao M-W, Tang C-M, Li S-P (2009) Population dynamics and identification of endophytic bacteria antagonistic toward plant-pathogenic fungi in cotton root. Microb Ecol 59:344–356

    Article  PubMed  Google Scholar 

  • Lidstrom ME (1992) The genetics and molecular biology of methanol-utilizing bacteria. In: Murrell JC, Dalton H (eds) Methane and methanol utilizers. Plenum, New York, pp 183–206

    Chapter  Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995) Induction of systemic resistance in cucumber against bacterial angular leaf spot by plant growth-promoting rhizobacteria. Phytopathology 85:843–847

    Article  Google Scholar 

  • Loaces I, Ferrando L, Fernandez Scavino A (2011) Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microb Ecol 61:606–618

    Article  PubMed  Google Scholar 

  • Lodewyckx C, Taghavi S, Mergeay M, Vangronsveld J, Clijsters H, van der Lelie D (2001) The effect of recombinant heavy metal resistant endophytic bacteria on heavy metal uptake by their host plant. Int J Phytorem 3:173–187

    Article  CAS  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteus F, Moore ERB, Taghavi S, Mezgeay M, Lelie DV (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:586–606

    Article  Google Scholar 

  • Loganathan P, Sunitha R, Prida AK, Nair S (1999) Isolation and characterization of genetically two distant group of Acetobacter diazotrophicus from new host plant (Eleusine coracana L.). J Appl Bacteriol 86:1053–1058

    Article  Google Scholar 

  • Luvizotto DM, Marcon J, Andreote FD, Dini-Andreote F, Neves AAC, Araújo WL, Pizzirani-Kleiner AA (2010) Genetic diversity and plant-growth related features of Burkholderia spp. from sugarcane roots. World J Microbiol Biotechnol 26:1829–1836

    Article  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Senthilkumar M, Seshadri S, Chung H (2004) Growth promotion and induction of systemic resistance in rice cultivar Co-47 (Oryza sativa L.) by Methylobacterium spp. Bot Bull Acad Sin 45:315–324

    Google Scholar 

  • Madhaiyan M, Poonguzhali S, Ryu J, Sa T (2006) Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224:268–278

    Article  PubMed  CAS  Google Scholar 

  • Magie AR, Wilson EE, Kosuge T (1963) Indoleacetamide as an intermediate in the synthesis of indoleacetic acid in Pseudomonas savastanoi. Science 141:1281–1282

    Article  PubMed  CAS  Google Scholar 

  • Magnani GS, Didonet CM, Cruz LM, Picheth CF, Pedrosa FO, Souza EM (2010) Diversity of endophytic bacteria in Brazilian sugarcane. Genet Mol Res 9:250–258

    Article  PubMed  CAS  Google Scholar 

  • Mahaffee WF, Kloepper JW (1997) Temporal changes in the bacterial communities of soil, rhizosphere and endorhiza. Microb Ecol 34:210–223

    Article  PubMed  Google Scholar 

  • Mahaffee WF, Kloepper JW, Van Vuurde JWL, Van Der Wolf JM, Van Den Brink M (1997) Endophytic colonization of Phaseolus vulgaris by Pseudomonas fluorescens strain 89B-27 and Enterobacter asburiae strain JM22. In: Ryder MH, Stephens PM, Bowen GD (eds) Improving plant productivity in rhizosphere bacteria. CSIRO, Melbourne, p 180

    Google Scholar 

  • Malinowski DP, Belesky DP (1999) Endophyte infection enhances the ability of tall fescue to utilize sparingly available phosphorus. J Plant Nutr 22:835–853

    Article  CAS  Google Scholar 

  • Mano H, Morisaki H (2008) Endophytic bacteria in the rice plant. Microbes Environ 23:109–117

    Article  PubMed  Google Scholar 

  • Martins ES, Praça LB, Dumas VF, Silva-Werneck JO, Sone EH, Waga IC, Berry C, Monnerat RG (2007) Characterization of Bacillus thuringiensis isolates toxic to cotton boll weevil (Anthonomus grandis). Biol Control 40:65–68

    Article  CAS  Google Scholar 

  • Martins ES, Aguiar RW, Martins NF, Melatti VM, Falcão R, Gomes AC, Ribeiro BM, Monnerat RG (2008) Recombinant Cry1Ia protein is highly toxic to cotton boll weevil (Anthonomus grandis Boheman) and fall armyworm (Spodoptera frugiperda). J Appl Microbiol 104:1363–1371

    Article  PubMed  CAS  Google Scholar 

  • Masclaux C, Expert D (1995) Signalling potential of iron in plant–microbe interactions: the pathogenic switch of iron transport in Erwinia chrysanthemi. Plant J 7:121–128

    Article  CAS  Google Scholar 

  • Mastretta C, Taghavi S, van der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytorem 11:251–267

    Article  CAS  Google Scholar 

  • McInroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342

    Article  CAS  Google Scholar 

  • Melo IS, Azevedo JL (1998) Controle biológico I. Embrapa, Jaguariuna, 262

    Google Scholar 

  • Mendes R, Pizzirani-Kleiner AA, Araújo WL, Raaijmakers JM (2007) Endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl Environ Microbiol 73:7259–7267

    Article  PubMed  CAS  Google Scholar 

  • Mendes R, Azevedo JL (2007) Valor biotecnológico de fungos endofíticos isolados de plantas de interesse econômico. In: Abstract, 5o Congresso Brasileiro de Micologia, pp 129–140

    Google Scholar 

  • Miliūtė I, Buzaitė O (2011) IAA production and other plant growth promoting traits of endophytic bacteria from apple tree. Biologija 57:98–102

    Article  Google Scholar 

  • Misaghi IJ, Donndelinger CR (1990) Endophytic bacteria in symptom-free cotton plants. Phytopathology 9:808–811

    Article  Google Scholar 

  • Monteiro PB, Renaudin J, Jagoueix-Eveillard S, Ayres AJ, Garnier M, Bové JM (2001) Catharanthus roseus, an experimental host plant for the citrus strain of Xylella fastidiosa. Plant Dis 85:246–251

    Article  Google Scholar 

  • Musson G (1994) Ecology and effects of endophytic bacteria in plant. Masters thesis, Auburn University, Auburn, AL

    Google Scholar 

  • Nachin L, El Hassouni M, Loiseau L, Expert D, Barras F (2001) SoxR-dependent response to oxidative stress and virulence of Erwinia chrysanthemi: the key role of SufC, an orphan ABC ATPase. Mol Microbiol 39:960–972

    Article  PubMed  CAS  Google Scholar 

  • Naher UA, Othman R, Shamsuddin ZHJ, Saud HM, Ismail MR (2009) Growth enhancement and root colonization of rice seedlings by Rhizobium and Corynebacterium spp. Int J Agric Biol 11:586–590

    Google Scholar 

  • Neilands JB, Nakamura K (1991) Detection, determination, isolation, characterization and regulation of microbial iron chelates. In: Winkelmann G (ed) CRC handbook of microbial iron chelates. CRC, Boca Raton, pp 1–14

    Google Scholar 

  • Newman LA, Reynolds CM (2005) Bacteria and phytoremediation: new uses for endophytic bacteria in plants. Trends Biotechnol 23:6–8

    Article  PubMed  CAS  Google Scholar 

  • Nudel C, Gonzalez R, Castaneda N, Mahler G, Actis LA (2001) Influence of iron on growth, production of siderophore compounds, membrane proteins, and lipase activity in Acinetobacter calcoaceticus BD 413. Microbiol Res 155:263–269

    Article  PubMed  CAS  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed  Google Scholar 

  • Oberhansli T, Defago G, Haas D (1991) Indole-3-acetic-acid (IAA) synthesis in the biocontrol strain CHA0 of Pseudomonas fluorescens – role of tryptophan side-chain oxidase. J Gen Microbiol 137:2273–2279

    Article  PubMed  CAS  Google Scholar 

  • Olivares FL, Baldani VLD, Reis VM, Baldani JI, Döbereiner J (1996) Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems and leaves predominantly of Gramineae. Biol Fert Soils 21:197–200

    Article  Google Scholar 

  • Omoregie SN, Asemota HN, Osagie AU, Mantell S, Ahmad MH (1999) Occurrence of free-living bacteria in tubers of Dioscorea yams. Trop Agric 76:250–255

    Google Scholar 

  • Owen NL, Hundley N (2004) Endophytes the chemical sintesizer inside plants. Sci Prog 87:79–99

    Article  PubMed  CAS  Google Scholar 

  • Pal SS (1998) Interactions of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant Soil 198:169–177

    Article  CAS  Google Scholar 

  • Palaniappan A, Goh WH, Tey JN, Wijaya IPM, Moochhala SM, Liedberg B, Mhaisalkar SG (2010) Aligned carbon nanotubes on quartz substrate for liquid gated biosensing. Biosens Bioelectron 25:1989–1993

    Article  PubMed  CAS  Google Scholar 

  • Park M, Kin C, Yang J, Lee H, Shin W, Kim S, Sa T (2005) Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol Res 160:127–133

    Article  PubMed  CAS  Google Scholar 

  • Paula MA, Siqueira JO, Döbereiner J (1993) Ocorrência de fungos micorrízicos vesiculoarbusculares e de bactérias diazotróficas na cultura de batata-doce. Braz J Soil Sci 17:349–356

    Google Scholar 

  • Perin L, Martínes-Aguilar L, Castro-Gonzáles R, Estrada-De-Los-Santos P, Cabellos-Avelar T, Guedes HV, Reis VM, Caballero-Mellado J (2006) Diazotrophic Burkholderia species associated with field-grown maize and sugarcane. Appl Environ Microbiol 72:3103–3110

    Article  PubMed  CAS  Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant–rhizobacteria interactions. Plant Cell Environ 26:189–199

    Article  CAS  Google Scholar 

  • Pimenta PFP, Modi GB, Pereira ST, Shahabuddin M, Sacks DL (1997) A novel role for the peritrophic matrix in protecting Leishmania from the hydrolytic activities of the sand fly midgut. Parasitology 115:359–369

    Article  PubMed  Google Scholar 

  • Pirttilä A, Joensuu P, Pospiech H, Jalonen J, Hohtola A (2004) Bud endophytes of Scots pine produce adenine derivatives and other compounds that affect morphology and mitigate browning of callus cultures. Physiol Plantarum 121:305–312

    Article  Google Scholar 

  • Pleban S, Ingel F, Chet I (1995) Control of Rhizoctonia solani and Sclerotium rolfsii in the greenhouse using endophytic Bacillus spp. Eur J Plant Pathol 101:665–672

    Article  Google Scholar 

  • Podolich O, Laschevskyy V, Ovcharenko L, Kozyrovska N, Pirttila AM (2009) Methylobacterium sp. resides in unculturable state in potato tissues in vitro and becomes culturable after induction by Pseudomonas fluorescens IMGB163. J Appl Microbiol 106:728–737

    Article  PubMed  CAS  Google Scholar 

  • Ponka A, Andersson Y, Siitonen A, de Jong B, Jahkola M, Haikala O, Kuhmonen A, Pakkala P (1995) Salmonella in alfalfa sprouts. Lancet 345:462–463

    Article  PubMed  CAS  Google Scholar 

  • Potrich DP, Passaglia LMP, Schrank IS (2003) Partial characterization of nif genes from the bacterium Azospirillum amazonense. Braz J Med Biol Rev 34:1105–1113

    Article  Google Scholar 

  • Proctor ME, Harnacher M, Tortorello ML, Archer JR, Davis JP (2001) Multistate outbreak of Salmonella serovar Muenchen infections associated with alfalfa sprouts grown from seeds pretreated with calcium hypochlorite. J Clin Microbiol 39:3461–3465

    Article  PubMed  CAS  Google Scholar 

  • Puente ME, Li CY, Bashan Y (2009) Rock-degrading endophytic bacteria in cacti. Environ Exp Bot 66:389–401

    Article  CAS  Google Scholar 

  • Pugsley AP, Oudega B (1987) Methods for studying colicins and their plasmids. In: Hardy KG (ed) Plasmids: a practical approach. IRL, Oxford, pp 105–161

    Google Scholar 

  • Purchase BS (1980) Nitrogen fixation associated with sugarcane. In: Proceedings of the South African Sugar Technologists Association, pp 173–176

    Google Scholar 

  • Qiu F, Huang Y, Sun L, Zhang X, Liu Z, Song W (2007) Leifsonia ginsengi sp. nov., isolated from ginseng root. Int J Syst Evol Microbiol 57:405–408

    Article  PubMed  Google Scholar 

  • Quecine MC, Araújo WL, Marcon J, Gai CS, Azevedo JL, Pizzirani-Kleiner AA (2008) Chitinolytic activity of endophytic Streptomyces and potential for biocontrol. Lett Appl Microbiol 47:486–491

    Article  PubMed  CAS  Google Scholar 

  • Quecine MC, Lacava PT, Magro SR, Parra JRP, Araújo WL, Azevedo JL, Pizzirani-Kleiner AA (2011) Partial characterization of chitinolytic extract from endophytic Streptomyces sp. and its effects on the boll weevil. J Agric Sci Technol 5:420–427

    Google Scholar 

  • Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160

    Article  PubMed  CAS  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T, Prakasan V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20:1–11

    Article  CAS  Google Scholar 

  • Ramesh R, Joshi AA, Ghanekar MP (2009) Pseudomonas: major endophytic bacteria to suppress bacterial wilt pathogen Ralstonia solanacearum in the egg plant (Solanum melongena L.). World J Microb Biot 25:47–55

    Article  Google Scholar 

  • Rampelotti-Ferreira FT, Ferreira A, Vendramim JD, Lacava PT, Azevedo JL, Araújo WL (2010) Colonization of rice and Spodoptera frugiperda J.E. Smith (Lepidoptera: Noctuidae) larvae by genetically modified endophytic Methylobacterium mesophilicum. Neotrop Entomol 39:308–310

    Article  PubMed  Google Scholar 

  • Reinhold B, Hurek T (1988) Location of diazotrophs in the interior with special attention to the kallar grass association. Plant Soil 110:259–268

    Article  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6:139–144

    Article  PubMed  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T, Gillis M, Hoste B, Vancanneyt M, Kersters K, Deley J (1993) Azoarcus gen. nov., nitrogen fixing proteobacteria associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth.), and description of 2 species, Azoarcus in digens sp. nov. and Azoarcus communis sp. nov. Int J Syst Bacteriol 43:574–584

    Article  Google Scholar 

  • Reis VM, Baldani JI, Baldani VLD, Döbereiner J (2000) Biological dinitrogen fixation in gramineae and palm trees. Crit Rev Plant Sci 10:227–247

    Article  Google Scholar 

  • Reiter B, Pfeifer U, Schwab H, Sessitsch A (2002) Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol 68:2261–2268

    Article  PubMed  CAS  Google Scholar 

  • Rennie RJ, Freitas JRD, Ruschel AP, Vose PB (1982) Isolation and identification of N2-fixing bacteria associated with sugarcane (Saccharum sp.). Can J Microbiol 28:462–467

    Article  CAS  Google Scholar 

  • Riggs PJ, Chelius MK, Iniguez AL, Kaeppler SM, Triplett EW (2001) Enhanced maize productivity by inoculation with diazotrophic bacteria. Austr J Plant Physiol 28:829–836

    Google Scholar 

  • Robbins PW, Allbright C, Benfield B (1998) Cloning and expression of a Streptomyces plicatus chitinase (chitinase 63) in Escherichia coli. J Biol Chem 263:443–447

    Google Scholar 

  • Robertson S, Kingston G, Dart PJ, Brown S (2000) Occurrence of endophytic bacteria in Australian sugarcane. In: Abstract, 8th international symposium nitrogen fixation with non-legumes, p 140

    Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837

    Article  PubMed  CAS  Google Scholar 

  • Ryan RP, Ryan DJ, Sun YC, Li F-M, Wang Y, Dowling DN (2007) An acquired efflux system is responsible for copper resistance in Xanthomonas strain IG-8 isolated from China. FEMS Microbiol Lett 268:40–46

    Article  PubMed  CAS  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  PubMed  CAS  Google Scholar 

  • Sagoe CI, Ando T, Kouno K, Nagaoka T (1998) Relative importance of protons and solution calcium concentration in phosphate rock dissolution by organic acids. Soil Sci Plant Nutr 44:617–625

    Article  Google Scholar 

  • Saikkonen K, Wäli P, Helander M, Faeth SH (2004) Evolution of endophyte–plant symbioses. Trends Plant Sci 9:275–280

    Article  PubMed  CAS  Google Scholar 

  • Sardi P, Saracchi M, Quaroni B, Borgonovi GE, Merli S (1992) Isolation of endophytic Streptomyces strains from surface-sterilized roots. Appl Environ Microbiol 58:2691–2693

    PubMed  CAS  Google Scholar 

  • Schaad NW, Pastnikova E, Lacey G, Fatmi M, Chang CJ (2004) Xylella fastidiosa subspecies: X. fastidiosa subsp. piercei, subsp. nov., X. fastidiosa subsp. multiplex subsp. nov., and X. fastidiosa subsp. pauca subsp. nov. Syst Appl Microbiol 27:290–300

    Article  PubMed  CAS  Google Scholar 

  • Scherwinski K, Wolf A, Berg G (2007) Assessing the risk of biological control agents on the indigenous microbial communities: Serratia plymuthica HRO-C48 and Streptomyces sp. HRO-71 as model bacteria. Biol Control 52:87–112

    CAS  Google Scholar 

  • Schroth MN, Hancook GH (1995) Disease suppressive soil and root colonizing bacteria science. Soil Biol Biochem 24:539–542

    Google Scholar 

  • Seghers D, Wittebolle L, Top EM, Verstraete W, Siciliano SD (2004) Impact of agricultural practices on the Zea mays L. endophytic community. Appl Environ Micobiol 70:1475–1482

    Article  CAS  Google Scholar 

  • Seipke RF, Kaltenpoth M, Hutchings MI (2012) Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbiol Rev 36:862–876

    Article  PubMed  CAS  Google Scholar 

  • Seldin L, Van Elsas JD, Penido EGC (1984) Bacillus azotofixans sp.nov., a nitrogen fixing species from Brazilian soils and grass roots. Int J Syst Bacteriol 34:451–456

    Article  CAS  Google Scholar 

  • Senthilkumar M, Madhaiyan M, Sundaram SP, Kannaiyan S (2009) Intercellular colonization and growth promoting effects of Methylobacterium sp. with plant-growth regulators on rice (Oryza sativa L. Cv CO-43). Microbiol Res 164:92–104

    Article  PubMed  CAS  Google Scholar 

  • Sessitsch A, Reiter B, Pfeifer U, Wilhelm E (2002) Cultivation independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and actinoymycetes specific PCR of 16S rRNA genes. FEMS Microbiol Ecol 39:23–32

    Article  PubMed  CAS  Google Scholar 

  • Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field grown potato plants and their plant growth-promoting and antagonistic abilities. Can J Microbiol 50:239–249

    Article  PubMed  CAS  Google Scholar 

  • Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L, van Overbeek L, Brar D, van Elsas JD, Reinhold-Hurek B (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant Microbe Interact 25:28–36

    Article  PubMed  CAS  Google Scholar 

  • Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and Nif- mutant strains. Mol Plant Microbe Interact 14:358–366

    Article  PubMed  CAS  Google Scholar 

  • Sharma A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158:243–248

    Article  PubMed  CAS  Google Scholar 

  • Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170

    Article  PubMed  CAS  Google Scholar 

  • Siciliano S, Fortin N, Himoc N (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67:2469–2475

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui ZA (2005) PGPR: prospective biocontrol agents of plant pathogens. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 111–142

    Google Scholar 

  • Silva KS, Rebouças TNH, Lemos OL, Bomfim MP, Bomfim AA, Esquivel GL, Barreto APP, José ARS, Dias NO, Tavares GM (2004) Patogenicidade causada pelo fungo Colletotrichum gloeosporioides (Penz) em diferentes espécies frutíferas. Rev Bras Frutic 28:131–133

    Article  Google Scholar 

  • Singh RK, Mishra RPM, Jaiswal HK, Kumar V, Pandey SP, Rao SB, Annapurna K (2006) Isolation and identification of natural endophytic rhizobia from rice (Oryza sativa L.) through rDNA PCR-RFLP and sequence analysis. Curr Microbiol 52:117–122

    Article  PubMed  CAS  Google Scholar 

  • Singh K, Agrawal KN, Bora GC (2011) Advanced techniques for weed and crop identification for site specific weed management. Biosyst Eng 109:52–64

    Article  Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751

    Article  PubMed  CAS  Google Scholar 

  • Stein T, Hayen-Schneg N, Fendrik I (1997) Contribution of BNF by Azoarcus sp. BH72 in Sorghum vulgare. Soil Biol Biochem 29:969–971

    Article  CAS  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  PubMed  CAS  Google Scholar 

  • Sturz AV (1995) The role of endophytic bacteria during seed piece decay and potato tuberization. Plant Soil 175:257–263

    Article  CAS  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soils 25:13–19

    Article  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG (1998) Associations of bacterial endophyte populations from red clover and potato crops with potential for beneficial allelopathy. Can J Microbiol 44:162–167

    Article  CAS  Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

    Article  Google Scholar 

  • Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequences analysis. Microb Ecol 55:415–424

    Article  PubMed  CAS  Google Scholar 

  • Sy A, Giraud E, Samba R, de Lajudie P, Gillis M, Dreyfus B (2001) Certaines légumineuses du genre Crotalaria sont spécifiquement nodulées par une nouvelle espèce de Methylobacterium. Can J Microbiol 47:503–508

    PubMed  CAS  Google Scholar 

  • Taechowisan T, Peberdy JF, Lumyong S (2003) Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J Microbiol Biotechnol 19:381–385

    Article  CAS  Google Scholar 

  • Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Appl Environ Microbiol 71:8500–8505

    Article  PubMed  CAS  Google Scholar 

  • Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, van der Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757

    Article  PubMed  CAS  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  PubMed  CAS  Google Scholar 

  • Tan ZY, Hurek T, Gyaneshwar P, Ladha JK, Reinhold-Hurek B (2001) Novel endophytes of rice form a taxonomically distinct subgroup of Serratia marcescens. Syst Appl Microbiol 24:245–251

    Article  PubMed  CAS  Google Scholar 

  • Tanwar SPS, Shaktawat MS (2003) Influence of phosphorus sources, levels and solubilizers on yield, quality and nutrient up-take of soybean (Glycine max) – wheat (Triticum aestivum) cropping system in southern Rajasthan. Indian J Agric Sci 73:3–7

    Google Scholar 

  • Taormina PJ, Beuchat LR, Slutsker L (1999) Infections associated with eating seed sprouts: an international concern. Emerg Infect Dis 5:626–634

    Article  PubMed  CAS  Google Scholar 

  • Tapia-Hernandez A, Bustillo-Cristales MR, Jimenez-Salgado T, Caballero-Mellado J, Fuentes-Ramirez LE (2000) Natural endophytic occurrence of Acetobacter diazotrophicus in pineapple plants. Microbiol Ecol 39:49–55

    Article  Google Scholar 

  • Toyota K, Kimura M (2000) Suppression of Ralstonia solanacearum in soil following colonization by other strains of R. solanacearum. Soil Sci Plant Nutr 46:449–459

    Article  Google Scholar 

  • Tsujibo H, Minoura K, Miyamoto K, Endo H, Moriwaki M, Inamori Y (1993) Purification and properties of a thermostable chitinase from Streptomyces thermoviolaceus OPC-520. Appl Environ Microbiol 59:620–622

    PubMed  CAS  Google Scholar 

  • Turner JT, Lampell JS, Stearmen RS, Sundin GW, Gunyuzlu UP, Anderson JJ (1991) Stability of the d-endotoxin gene from Bacillus thuringiensis subsp. kurstaki in a recombinant strain of Clavibacter xyli subsp. cynodontis. Appl Environ Microbiol 57:3522–3528

    PubMed  CAS  Google Scholar 

  • Van Aken B, Yoon JM, Schnoor JL (2004) Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides × nigra DN34). Appl Environ Microbiol 70:508–517

    Article  PubMed  CAS  Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Van der Lelie D, Barac T, Taghavi S, Vangronsveld J (2005) New uses of endophytic bacteria to improve phytoremediation. Trends Biotechnol 23:8–9

    Article  CAS  Google Scholar 

  • Van Der Peer R, Puente HLM, LA Weger DE, Shipper B (1990) Characterization of root surface and endorhizosphere pseudomonas in relation to their colonization of roots. Appl Environ Microbiol 56:2462–2470

    PubMed  Google Scholar 

  • van Loon LC, Bakker P, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Vendan RT, Yu YJ, Lee SH, Rhee YH (2010) Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J Microbiol 48:559–565

    Article  PubMed  CAS  Google Scholar 

  • Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91:127–141

    Article  PubMed  CAS  Google Scholar 

  • Verma VC, Singh SK, Prakash S (2011) Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss. J Basic Microb 5:550–556

    Article  Google Scholar 

  • Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004) Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol Fert Soils 40:36–43

    Article  CAS  Google Scholar 

  • Weber OB, Baldani VLD, Teixeira KRS, Kirchhof G, Baldani JI, Döbereiner J (1999) Isolation and characterization of diazotrophic bacteria from banana and pineapple plants. Plant Soil 210:103–113

    Article  CAS  Google Scholar 

  • Weissinger WR, Beuchat LR (2000) Comparison of aqueous chemical treatments to eliminate Salmonella on alfalfa seeds. J Food Prot 63:1475–1482

    PubMed  CAS  Google Scholar 

  • Weissinger WR, McWatters KH, Beuchat LR (2001) Evaluation of volatile chemical treatments for lethality to Salmonella on alfalfa seeds and sprouts. J Food Prot 64:442–450

    PubMed  CAS  Google Scholar 

  • Weyens N, Vander Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant-endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254

    Article  PubMed  CAS  Google Scholar 

  • Wiehe W, Hecht-Bucholz C, Hoflich G (1994) Electron microscopic investigations on root colonization of Lupinus albus and Pisum sativum with two associative plant growth promoting rhizobacteria, Pseudomonas fluorescens and Rhizobium leguminosarum bv. trifolii. Symbiosis 86:221–224

    Google Scholar 

  • Wilson D (1995) Endophyte – the evolution of a term and clarification of its use and definition. Oikos 72:274–276

    Article  Google Scholar 

  • Wolkers H, van Bavel B, Ericson I, Skoglund E, Kovacs KM, Lydersen C (2006) Congener-specific accumulation and patterns of chlorinated and brominated contaminants in adult male walruses from Svalbard, Norway: indications for individual-specific prey selection. Sci Total Environ 370:70–79

    Article  PubMed  CAS  Google Scholar 

  • Yang J-H, Liu H-X, Zhu G-M, Pan Y-L, Guo J-H (2008) Diversity analysis of antagonists from rice-associated bacteria and their application in biocontrol of rice diseases. J Appl Microbiol 104:91–104

    PubMed  CAS  Google Scholar 

  • Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, PhilipHollingsworth S, Orgambide G, deBruijn F, Stoltzfus J, Buckley D, Schmidt TM, Mateos PF, Ladha JK, Dazzo FB (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99–114

    Article  CAS  Google Scholar 

  • Yu WJ, Lee BJ, Nam SY, Yang DC, Yun YW (2003) Modulating effects of Korean ginseng saponins on ovarian function immature rats. Biol Pharm Bull 26:2574–2580

    Article  Google Scholar 

  • Zaida A, Khan MS, Amil MD (2003) Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). Eur J Agron 19:15–21

    Article  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    Article  PubMed  CAS  Google Scholar 

  • Zakria M, Njoloma J, Saeki Y, Akao S (2007) Colonization and nitrogen-fixing ability of Herbaspirillum sp. strain B501 gfp1 and assessment of its growth-promoting ability in cultivated rice. Microbes Environ 22:197–206

    Article  Google Scholar 

  • Zinniel DK, Lambrecht P, Harris NB, Feng Z, Kuczmarski D, Higley P, Ishimaru CA, Arunakumari A, Barletta RG, Vidaver AK (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Teixeira Lacava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lacava, P.T., Azevedo, J.L. (2013). Endophytic Bacteria: A Biotechnological Potential in Agrobiology System. In: Maheshwari, D., Saraf, M., Aeron, A. (eds) Bacteria in Agrobiology: Crop Productivity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37241-4_1

Download citation

Publish with us

Policies and ethics