Intelligence and Reference

Formal Ontology of the Natural Computation
Part of the Studies in Applied Philosophy, Epistemology and Rational Ethics book series (SAPERE, volume 7)

Abstract

In a seminal work published in 1952, “The chemical basis of morphogenesis”, A. M. Turing established the core of what today we call “natural computation” in biological systems, intended as self-organizing dissipative systems. In this contribution we show that a proper implementation of Turing’s seminal idea cannot be based on diffusive processes, but on the coherence states of condensed matter according to the dissipative Quantum Field Theory (QFT) principles. This foundational theory is consistent with the intentional approach in cognitive neuroscience, as far as it is formalized in the appropriate ontological interpretation of the modal calculus (formal ontology). This interpretation is based on the principle of the “double saturation” between a singular argument and its predicate that has its dynamical foundation in the principle of the “doubling of the degrees of freedom” between a brain state and the environment, as an essential ingredient of the mathematical formalism of dissipative QFT.

Keywords

Morphogenesis quantum field theory self-organizing systems dissipative structures double saturation degrees of freedom doubling chaotic trajectory chaotic trajectory cognitive neuroscience 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Turing, A.M.: On computable numbers with an application to the Entscheidung problem. Proceedings of the London Mathematical Society 42, 230–265 (1936)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Turing, A.M.: Systems of logic based on ordinals. Proceedings of the London Mathematical Society 45, 161–228 (1939)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Turing, A.M.: Lecture to the London Mathematical Society on 20 February 1947. In: Ince, D.C. (ed.) Collected Works, I: Mechanical Intelligence, pp. 87–105. North Holland, Amsterdam (1992)Google Scholar
  4. 4.
    Turing, A.M.: Intelligent Machinery, report for the National Physical Laboratory. In: Ince, D.C. (ed.) Collected Works, I: Mechanical Intelligence, p. 106. North Holland, Amsterdam (1992/1948)Google Scholar
  5. 5.
    Turing, A.M.: The chemical basis of morphogenesis. Phil. Trans. R. Soc. London B 237, 37–72 (1952)CrossRefGoogle Scholar
  6. 6.
    Dodig-Crnkovic, G.: The significance of models of computation. From Turing model to natural computation. Mind and Machine (2011), doi:10.1007/s11023-011-9235-1Google Scholar
  7. 7.
    Dodig-Crnkovic, G.: Physical computation as dynamics of form that glues everything together. Information 3, 204–218 (2012)CrossRefGoogle Scholar
  8. 8.
    Cocchiarella, N.B.: Logic and ontology. Axiomathes 12, 117–150 (2001)CrossRefGoogle Scholar
  9. 9.
    Cocchiarella, N.B.: Formal Ontology and Conceptual Realism. Springer, Berlin (2007)MATHGoogle Scholar
  10. 10.
    Basti, G.: Ontologia formale: per una metafisica post-moderna. In: Strumia, A. (ed.) Il problema dei fondamenti. Da Aristotele, a Tommaso d’Aquino, all’Ontologia Formale, pp. 193–228. Cantagalli, Siena (2007)Google Scholar
  11. 11.
    Basti, G.: Ontologia formale. Tommaso d’Aquino ed Edith Stein. In: Ales-Bello, A., Alfieri, F., Shahid, M. (eds.) Edith Stein, Hedwig Conrad-Martius, Gerda Walter. Fenomenologia della persona, della vita e della comunità, Laterza, Bari, pp. 107–388 (2011)Google Scholar
  12. 12.
    Meixner, U.: The theory of ontic modalities. Ontos Verlag, Frankfurt (2007)Google Scholar
  13. 13.
    Tarski, A.: The Concept of Truth in Formalized Languages. In: Corcoran, J. (ed.) Logic, Semantics, Metamathematics, 2nd edn., Hackett, Indianapolis IN, pp. 152–278 (1983, 1935)Google Scholar
  14. 14.
    Carnap, R.: Testability and meaning. Philosophy of Science 3-4, 419–461 (1936)CrossRefGoogle Scholar
  15. 15.
    Putnam, H.: The meaning of ’meaning’. In: Philosophical Papers II: Mind, Language and Reality, pp. 215–271. Cambridge UP, Cambridge (1975)CrossRefGoogle Scholar
  16. 16.
    Fodor, J.A.: Metodological solipsism considered as a resarch strategy in cognitive psychology. Behavioral and Brain Sciences 3-1, 63–73 (1980)CrossRefGoogle Scholar
  17. 17.
    Quine, W.V.O.: Sticks and stones or the ins and the outs of existence. In: Rounder, L.S. (ed.) On Nature, Boston Univ. Studies in Philosophy and Religion, vol. 6, pp. 13–26. Notre Dame UP, Notre Dame (1984)Google Scholar
  18. 18.
    Basti, G., Perrone, A.L.: Intentionality and Foundations of Logic: a New Approach to Neurocomputation. In: Kitamura, T. (ed.) What Should be Computed to Understand and Model Brain Function? From Robotics, Soft Computing, Biology and Neuroscience to Cognitive Philosophy, pp. 239–288. World Publishing, Singapore (2001)CrossRefGoogle Scholar
  19. 19.
    Basti, G., Perrone, A.L.: Le radici forti del pensiero debole. Dalla metafisica, alla matematica, al calcolo. Il Poligrafo and Lateran UP, Padua-Rome (1996)Google Scholar
  20. 20.
    Basti, G., Perrone, A.L.: Chaotic neural nets, computability, undecidability. An outlook of computational dynamics. International Journal of Intelligent Systems 10, 41–69 (1995)MATHCrossRefGoogle Scholar
  21. 21.
    Kripke, S.: Naming and necessity. Harvard UP, Cambridge (1980)Google Scholar
  22. 22.
    Kripke, S.: Outline of a theory of truth. The Journal of Philosophy 72-19, 690–716 (1975)CrossRefGoogle Scholar
  23. 23.
    Kleene, S.C.: Introduction to meta-mathematics. North Holland, Amsterdam (1952)Google Scholar
  24. 24.
    Penrose, R.: Shadows of the mind. A search for the missing science of consciousness. Oxford UP, Oxford (1996)Google Scholar
  25. 25.
    Blackburn, P., De Rijke, M., Venema, Y.: Modal logic. Cambridge tracts in theoretical computer science. Cambridge UP, Cambridge (2010)Google Scholar
  26. 26.
    Lewis, C.I.: Implication and the Algebra of Logic. Mind 21, 522–531 (1912)CrossRefGoogle Scholar
  27. 27.
    Lewis, C.I.: The Calculus of Strict Implication. Mind 23, 240–247 (1914)CrossRefGoogle Scholar
  28. 28.
    Lewis, C.I.: A Survey of Symbolic Logic. University of California Press, Berkeley (1918)Google Scholar
  29. 29.
    Rovelli, C.: Relational quantum mechanics. Int. J. Theor. Phys. 35, 1637–1678 (1996)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Van Fraassen, B.C.: Quantum mechanics. An Empiricist View. Oxford UP, Oxford (1991)CrossRefGoogle Scholar
  31. 31.
    Kochen, S.: A new interpretation of quantum mechanics. In: Mittelstaedt, P., Lahti, P. (eds.) Symposium on the Foundations of Modern Physics, pp. 151–169. World Scientific, Singapore (1985)Google Scholar
  32. 32.
    Dieks, D.: Modal Interpretation of Quantum Mechanics, Measurements, and Macroscopic Behaviour. Physical Review A 49, 2290–2300 (1994)CrossRefGoogle Scholar
  33. 33.
    Dieks, D.: Quantum mechanics: an intelligible description of objective reality? Foundations of Physics 35, 399–415 (2005)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Dickson, M., Dieks, D.: Modal Interpretations of Quantum Mechanics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Spring 2009 edn.) (2009), http://plato.stanford.edu/archives/spr2009/entries/qm-modal/
  35. 35.
    Burgess, J.P.: Philosophical logic (Princeton foundations of contemporary philosophy). Princeton UP, Princeton (2009)Google Scholar
  36. 36.
    Galvan, S.: Logiche intensionali. Sistemi proposizionali di logica modale, deontica, epi-stemica, Franco Angeli, Milano (1991)Google Scholar
  37. 37.
    Davies, P.: Universe from bit. In: Davies, P., Gregersen, N.H. (eds.) Information and the Nature of Reality. From Physics to Metaphysics, pp. 65–91. Cambridge UP, Cambridge (2010)CrossRefGoogle Scholar
  38. 38.
    Benioff, P.: Towards A Coherent Theory of Physics and Mathematics: The Theory-Experiment Connection. Foundations of Physics 35, 1825–1856 (2005)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Vitiello, G.: Stati coerenti e domini coerenti della fisica del vivente (Coherent states and coherent domains of the physics of the living matter). La Medicina Biologica 4, 13–19 (2010)Google Scholar
  40. 40.
    Frölich, H.: Long range coherence and energy storage in biological systems. Int. J. of Quantum Chemistry 2, 641 (1968)CrossRefGoogle Scholar
  41. 41.
    Popp, F.A., Yan, Y.: Delayed luminescence of biological systems in terms of coherent states. Physics Letters A293, 93–97 (2002)MathSciNetGoogle Scholar
  42. 42.
    Del Giudice, E., Doglia, S., Milani, M., Vitiello, G.: Spontaneous symmetry breakdown and boson condensation in biology. Phys. Lett. 95A, 508 (1983)Google Scholar
  43. 43.
    Del Giudice, E., Doglia, S., Milani, M., Vitiello, G.: A quantum field theoretical approach to the collective behavior of biologicl systems. Nucl. Phys. B251, 375 (1985)CrossRefGoogle Scholar
  44. 44.
    Del Giudice, E., Doglia, S., Milani, M., Vitiello, G.: Electromagnetic field and spontaneous symmetry breakdown in biological matter. Nucl. Phys. B275, 185 (1986)CrossRefGoogle Scholar
  45. 45.
    Del Giudice, E., Preparata, G., Vitiello, G.: Water as a free electron laser. Phys. Rev. Lett. 61, 1085 (1988)CrossRefGoogle Scholar
  46. 46.
    Del Giudice, E., Vitiello, G.: The role of the electromagnetic field in the formation of do-mains in the process of symmetry breaking phase transitions. Phys. Rev. A74, 022105 (2006)Google Scholar
  47. 47.
    Vitiello, G.: Coherence and electromagnetic field in living matter. Nanobiology 1, 221 (1992)Google Scholar
  48. 48.
    Nambu, Y.: Quasiparticles and Gauge Invariance in the Theory of Superconductivity. Physical Review 117, 648–663 (1960)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Goldstone, J.: Field Theories with Superconductor Solutions. Nuovo Cimento 19, 154–164 (1961)MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Goldstone, J., Salam, A., Weinberg, S.: Broken Symmetries. Physical Review 127, 965–970 (1962)MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Itzykson, C., Zuber, G.: Quantum field theory. McGraw-Hill, New York (1980)Google Scholar
  52. 52.
    Umezawa, H.: Advanced field theory: micro, macro and thermal concepts. American Institute of Physics, New York (1993)Google Scholar
  53. 53.
    Basti, G., Perrone, A.L.: Neural nets and the puzzle of intentionality. In: Neural Nets. WIRN Vietri-01. Proceedings of 12th Italian Workshop on Neural Nets, Vietri sul Mare, Salerno, Italy, May 17-19. Springer, Berlin (2002)Google Scholar
  54. 54.
    Basti, G.: Logica della scoperta e paradigma intenzionale nelle scienze cognitive. In: Carere-Comes, T. (ed.) Quale scienza per la psicoterapia? Atti del III Congresso nazionale della SEPI (Society for the Exploration of Psychotherapy Integration). Florence Art Edition, Firenze, pp. 183–216 (2009)Google Scholar
  55. 55.
    Freeman, W.J., Vitiello, G.: Nonlinear brain dynamics as macroscopic manifestation of underlying many-body field dynamics. Physics of Life Reviews 3-2, 93–118 (2006)CrossRefGoogle Scholar
  56. 56.
    Freeman, W.J., Vitiello, G.: Dissipation and spontaneous symmetry breaking in brain dynamics. Journal of Physics A: Mathematical and Theoretical 41-30, 304042 (2008)Google Scholar
  57. 57.
    Vitiello, G.: Coherent states, fractals and brain waves. New Mathematics and Natural Computing 5-1, 245–264 (2009)CrossRefGoogle Scholar
  58. 58.
    Freenan, W.J.: Origin, structure, and role of background EEG activity. Part 1. Analytic amplitude. Clin. Neurophysiol. 115, 2077–2088 (2004)CrossRefGoogle Scholar
  59. 59.
    Freeman, W.J.: Origin, structure, and role of background EEG activity. Part 2. Analytic phase. Clin. Neurophysiol. 115, 2089–2107 (2004)CrossRefGoogle Scholar
  60. 60.
    Freeman, W.J.: Origin, structure, and role of background EEG activity. Part 3. Neural frame classification. Clin. Neurophysiol. 116, 111–1129 (2005)CrossRefGoogle Scholar
  61. 61.
    Freeman, W.J.: Origin, structure, and role of background EEG activity. Part 4. Neural frame simulation. Clin. Neurophysiol. 117, 572–589 (2006)CrossRefGoogle Scholar
  62. 62.
    Freeman, W.J., Burke, B.C., Holmes, M.D., Vanhatalo, S.: Spatial spectra of scalp EEG and EMG from awake humans. Clin. Neurophysiol. 114, 1055–1060 (2003)CrossRefGoogle Scholar
  63. 63.
    Freeman, W.J., Ga’al, G., Jornten, R.: A neurobiological theory of meaning in perception. Part 3. Multiple cortical areas synchronize without loss of local autonomy. Intern. J. Bi-furc. Chaos 13, 2845–2856 (2003)MATHCrossRefGoogle Scholar
  64. 64.
    Freeman, W.J., Rogers, L.J.: A neurobiological theory of meaning in perception. Part 5. Multicortical patterns of phase modulation in gamma EEG. Int. J. Bifurc. Chaos 13, 2867–2887 (2003)MATHCrossRefGoogle Scholar
  65. 65.
    Umezawa, H.: Development in concepts in quantum field theory in half century. Math. Japonica 41, 109–124 (1995)MathSciNetMATHGoogle Scholar
  66. 66.
    Celeghini, E., Rasetti, M., Vitiello, G.: Quantum dissipation. Annals of Phys. 215, 156–170 (1992)MathSciNetCrossRefGoogle Scholar
  67. 67.
    Vitiello, G.: The dissipative brain. In: Globus, G.G., Pribram, K.H., Vitiello, G. (eds.) Brain and Being - At the boundary between Science, Philosophy, Language and Arts, pp. 317–330. John Benjamins Pub. Co., Amstedam (2004)Google Scholar
  68. 68.
    Bateson, G.: Mind and nature: a necessary unity. Hampton Press, Princeton (2002)Google Scholar
  69. 69.
    Marturana, H.R., Varela, F.J.: Autopoiesis and cognition. The realization of the living. Reidel, Boston (1980)CrossRefGoogle Scholar
  70. 70.
    Clark, A.: Supersizing the mind. Embodiment, action and cognitive extension. Oxford University Press, Oxford (2008)Google Scholar
  71. 71.
    Noë, A.: Out of our heads. Why you are not your brain and other lessons from the biology of consciousness. Hill and Wang Publishers, New York (2009)Google Scholar
  72. 72.
    Perrone, A.L.: A formal scheme for avoiding undecidable problems. Applications to chaotic behavior characterization and parallel computation. In: Andersson, S.I. (ed.) Analysis of Dynamical and Cognitive Systems. LNCS, vol. 888, pp. 9–52. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  73. 73.
    Freeman, W.J.: Nonlinear dynamics and the intention of Aquinas. Mind and Matter 6-2, 207–234 (2008)Google Scholar
  74. 74.
    Freeman, W.J.: Foreword. In: Freeman, W.J. (ed.) How brains make up their brains (Japanese Edition) (2012) (in press)Google Scholar
  75. 75.
    Searle, J.R.: Intentionality. An essay in the philosophy of mind. Cambridge UP, New York (1993)Google Scholar
  76. 76.
    Zalta, E.: Intensional logic and the metaphysics of intentionality. MIT Press, Cambridge (1988)Google Scholar
  77. 77.
    Venema, Y.: Algebras and co-algebras. In: Blackburn, P., van Benthem, J.F., Wolter, F. (eds.) Handbook of Modal Logic, pp. 331–426. Elsevier, Amsterdam (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Faculty of PhilosophyLateran UniversityRomeItaly

Personalised recommendations