Advertisement

Neurobiological Computation and Synthetic Intelligence

  • Craig A. Lindley
Part of the Studies in Applied Philosophy, Epistemology and Rational Ethics book series (SAPERE, volume 7)

Abstract

When considering the ongoing challenges faced by cognitivist approaches to artificial intelligence, differences in perspective emerge when the synthesis of intelligence turns to neurobiology for principles and foundations. Cognitivist approaches to the development of engineered systems having properties of autonomy and intelligence are limited in their lack of grounding and emphasis upon linguistically derived models of the nature of intelligence. The alternative of taking inspiration more directly from biological nervous systems can go far beyond twentieth century models of artificial neural networks (ANNs), which greatly oversimplified brain and neural functions. The synthesis of intelligence based upon biological foundations must draw upon and become part of the ongoing rapid expansion of the science of biological intelligence. This includes an exploration of broader conceptions of information processing, including different modalities of information processing in neural and glial substrates. The medium of designed intelligence must also expand to include biological, organic and inorganic molecular systems capable of realizing asynchronous, analog and self-* architectures that digital computers can only simulate.

Keywords

Artificial intelligence neuroscience natural computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baddeley, R.: Introductory Information Theory and the Brain. In: Baddeley, R., Hancock, P., Földiák, P. (eds.) Information Theory and the Brain. Cambridge University Press (2000)Google Scholar
  2. 2.
    Breedlove, S.M., Watson, N.V., Rosenzweig, M.R.: Biological Psychology, 6th edn. Sinauer Associates, Inc. Publishers, Sunderland (2010)Google Scholar
  3. 3.
    Brooks, R.A.: Cambrian Intelligence. MIT Press (1999)Google Scholar
  4. 4.
    Brusca, R.C., Brusca, G.L.: Invertebrates, 2nd edn. Sinauer Associates (2003)Google Scholar
  5. 5.
    Conaco, C., Bassett, D.S., Zhou, H., Arcila, M.L., Degnan, S.M., Degnan, B.M., Kosik, K.S.: Functionalization of a Protosynaptic Gene Expression Network. In: Proceedings of the National Academy of Sciences, June 20 (2012)Google Scholar
  6. 6.
    Crnkovic, G.D.: Info-computationalism and Morphological Informational Structure. In: 1st Annual Conference on Integral Biomathics, August 29-31. Stirling University, Scotland (2011)Google Scholar
  7. 7.
    Eliasmith, C., Anderson, C.H.: Neural Engineering: Computation, representation and dynamics in neurobiological systems. MIT Press (2003)Google Scholar
  8. 8.
    Fiorillo, C.D.: A new approach to the information in neural systems. In: 1st Annual Conference on Integral Biomathics, August 29-31. Stirling University, Scotland (2011)Google Scholar
  9. 9.
    Fiorillo, C.D.: Towards a general theory of neural computation based on prediction by single neurons. PLoS ONE 3, e3298 (2008)Google Scholar
  10. 10.
    Friston, K.: The free energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010)CrossRefGoogle Scholar
  11. 11.
    Granger, R.: Engines of the Brain: The Computational Instruction Set of Human Cognition. AI Magazine 27, 15–32 (2006)Google Scholar
  12. 12.
    Hameroff, S.: The “conscious pilot”—dendritic synchrony moves through the brain to mediate consciousness. Journal of Biological Physics 36(1) (2009), doi:10.1007/s10867-009-9148-xGoogle Scholar
  13. 13.
    Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science, 4th edn. McGraw-Hill, New York (2000)Google Scholar
  14. 14.
    Lawn, I.D., Mackie, G.O., Silver, G.: Conduction system in a sponge. Science 211, 1169–1171 (1981)CrossRefGoogle Scholar
  15. 15.
    Lindley, C.A.: Synthetic Intelligence: Beyond A.I. and Robotics. In: 1st Annual Conference on Integral Biomathics, August 29-31. Stirling University, Scotland (2011)Google Scholar
  16. 16.
    London, M., Hausser, M.: Dendritic computation, Annu. Rev. Neurosci. 28, 503–532 (2005)CrossRefGoogle Scholar
  17. 17.
    Newell, A., Simon, H.A.: Computer Science as Empirical Inquiry: Symbols and Search. CACM 19, 113–126 (1975)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Potter, S.M.: What Can AI Get from Neuroscience? In: Lungarella, M., Iida, F., Bongard, J.C., Pfeifer, R. (eds.) 50 Years of AI, Festschrift. LNCS (LNAI), vol. 4850, pp. 174–185. Springer, Heidelberg (2007)Google Scholar
  19. 19.
    Rall, W., Shepherd, G.M.: Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. J. Neurophysiology 5, 884–889 (1968)Google Scholar
  20. 20.
    Rinzel, J.: Distinctive Roles for Dendrites in Neuronal Computation. SIAM News 40(2) (March 2007)Google Scholar
  21. 21.
    Rorty, R.: Philosophy and the Mirror of Nature. Princeton University Press, Princeton (1979)Google Scholar
  22. 22.
    Ruppert, E.E., Fox, R.S., Barnes, R.D.: Invertebrate Zoology, 7th edn., pp. 111–124. Brooks/Cole (2004)Google Scholar
  23. 23.
    Shannon, C.E.: A Mathematical Theory of Communication. Bell System Technical Journal 27, 379–423, 623–656 (1948)Google Scholar
  24. 24.
    Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. The University of Illinois Press, Urbana (1949)MATHGoogle Scholar
  25. 25.
    Squire, L.R., Bloom, F.E., Spitzer, N.C., du Lac, S., Ghosh, A., Berg, D.: Fundamental Neuroscience, 3rd edn. Academic Press (2008)Google Scholar
  26. 26.
    Sterratt, D., Graham, B., Gillies, A., Willshaw, D.: Principles of Computational Modelling in Neuroscience. Cambridge University Press (2011)Google Scholar
  27. 27.
    Turing, A.M.: Computing Machinery and Intelligence. Mind (59), 433–460 (1950)Google Scholar
  28. 28.
    Verkhratsky, A., Butt, A.: Glial Neurobiology: A Textbook. John Wiley and Sons Ltd. (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Intelligent Sensing and Systems LaboratoryCSIRO ICT CentreHobartAustralia

Personalised recommendations