Skip to main content

The Coordination of Probabilistic Inference in Neural Systems

  • Chapter
Computing Nature

Part of the book series: Studies in Applied Philosophy, Epistemology and Rational Ethics ((SAPERE,volume 7))

  • 1034 Accesses

Abstract

Life, thought of as adaptively organised complexity, depends upon information and inference, which is nearly always inductive, because the world, though lawful, is far from being wholly predictable. There are several influential theories of probabilistic inference in neural systems, but here I focus on the theory of Coherent Infomax, and its relation to the theory of free energy reduction. Coherent Infomax shows, in principle, how life can be preserved and improved by coordinating many concurrent inferences. It argues that neural systems combine local reliability with flexible, holistic, context-sensitivity. What this perspective contributes to our understanding of neuronal inference is briefly outlined by relating it to cognitive and neurophysiological studies of context-sensitivity and gain-control, psychotic disorganization, theories of the Bayesian brain, and predictive coding. Limitations of the theory and unresolved issues are noted, emphasizing those that may be of interest to philosophers, and including the possibility of major transitions in the evolution of inferential capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Phillips, W.A., von der Malsburg, C., Singer, W.: Dynamic coordination in brain and mind. In: Von der Malsburg, C., Phillips, W.A., Singer, W. (eds.) Dynamic Coordination in the Brain: From Neurons to Mind. Strüngmann forum report, vol. 5, ch.1, pp. 1–24. MIT Press, Cambridge (2010)

    Google Scholar 

  2. Friston, K.J.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010)

    Article  Google Scholar 

  3. Phillips, W.A., Kay, J., Smyth, D.: The discovery of structure by multi-stream networks of local processors with contextual guidance. Network-Comp. Neural Systems 6, 225–246 (1995)

    Article  MATH  Google Scholar 

  4. Kay, J., Floreano, D., Phillips, W.A.: Contextually guided unsupervised learning using local multivariate binary processors. Neural Networks 11, 117–140 (1998)

    Article  Google Scholar 

  5. Kay, J., Phillips, W.A.: Coherent infomax as a computational goal for neural systems. B. Math. Biol. 73, 344–372 (2011), doi:10.1007/s11583-010-9564-x

    Article  MathSciNet  MATH  Google Scholar 

  6. Jaynes, E.T.: Probability Theory: The Logic of Science, Edited by G. Larry Bretthorst. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  7. Engel, C., Singer, W.: Better than Conscious? Strüngmann forum report, vol. 1. MIT Press, Cambridge (2008)

    Google Scholar 

  8. Yuille, A., Kersten, D.: Vision as Bayesian inference: analysis by synthesis? Trends Cogn. Sci. 10(7), 301–308 (2006)

    Article  Google Scholar 

  9. Knill, D.C., Pouget, A.: The Bayesian Brain: the role of uncertainty in neural coding and computation. Trends Neurosci. 27, 712–719

    Google Scholar 

  10. Rao, R.P., Ballard, D.H.: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2(1), 79–87 (1999/2004)

    Article  Google Scholar 

  11. Barlow, H.B.: Inductive inference, coding, perception, and language. Perception 3, 123–134 (1974)

    Article  Google Scholar 

  12. Barlow, H.B.: Possible principles underlying the transformations of sensory messages. In: Rosenblith, W. (ed.) Sensory Communication, pp. 217–234. MIT Press, Cambridge (1961)

    Google Scholar 

  13. Linsker, R.: Perceptual neural organization: some approaches based on network models and information theory. Annu. Rev. Neurosci. 13, 257–281 (1990)

    Article  Google Scholar 

  14. Wolpert, D.M., Diedrichsen, J., Flanagan, J.R.: Principles of sensorimotor learning. Nat. Rev. Neurosci. (in press)

    Google Scholar 

  15. Friston, K., Kilner, J., Harrison, L.: A free energy principle for the brain. J. Physiol. Paris 100(1-3), 70–87 (2006)

    Article  Google Scholar 

  16. Friston, K.J., Stephan, K.E.: Free-energy and the brain. Synthese 159, 417–458 (2007)

    Article  Google Scholar 

  17. Phillips, W.A., Singer, W.: In search of common foundations for cortical computation. Behav. Brain Sci. 20, 657–722 (1997)

    Article  Google Scholar 

  18. von der Malsburg, C., Phillips, W.A., Singer, W. (eds.): Dynamic coordination in the brain: from neurons to mind. Strüngmann forum report, vol. 5. MIT Press, Cambridge (2010)

    Google Scholar 

  19. Phillips, W.A., Silverstein, S.M.: Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behav. Brain Sci. 26, 65–138 (2003)

    Google Scholar 

  20. Phillips, W.A.: Self-organized complexity and Coherent Infomax from the viewpoint of Jaynes’s probability theory. Information 3(1), 1–15 (2012), doi:10.3390/info3010001

    Article  Google Scholar 

  21. Clark, A.: Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. (in press)

    Google Scholar 

  22. Spratling, M.W.: Predictive-coding as a model of biased competition in visual attention. Vis. Res. 48, 1391–1408 (2008)

    Article  Google Scholar 

  23. Wacongne, C., Changeaux, J.-P., Deheane, S.: A neuronal model of predictive coding accounting for the mismatch negativity. J. Neurosci. 32, 3665–3678 (2012)

    Article  Google Scholar 

  24. Szmatháry, E., Maynard Smith, J.: The major evolutionary transitions. Nature 374, 227–232 (1995)

    Article  Google Scholar 

  25. Ginter, F., Boberg, J., Jarvinen, J., Salakoski, T.: New techniques for disambiguation in natural language and their application to biological text. J. Mach. Learn. Res. 5, 605–621 (2004)

    MathSciNet  Google Scholar 

  26. Phillips, W.A., Chapman, K.L.S., Berry, P.D.: Size perception is less context-sensitive in males. Perception 33, 79–86 (2004)

    Article  Google Scholar 

  27. Doherty, M.J., Tsuji, H., Phillips, W.A.: The context-sensitivity of visual size perception varies across cultures. Perception 37, 1426–1433 (2008)

    Article  Google Scholar 

  28. Uhlhaas, P.J., Phillips, W.A., Mitchell, G., Silverstein, S.M.: Perceptual grouping in disorganized schizophrenia. Psychiatry Research 145, 105–117 (2006)

    Article  Google Scholar 

  29. Doherty, M.J., Campbell, N.M., Tsuji, H., Phillips, W.A.: The Ebbinghaus illusion deceives adults but not young children. Developmental Science, 1–8 (2009), doi:10.1111/j.1467-7687.2009.00931.x

    Google Scholar 

  30. Fiorillo, C.D.: On the need for a unified and Jaynesian definition of probability and information within neuroscience. Information 3, 175–203 (2012)

    Article  Google Scholar 

  31. Phillips, W.A., Craven, B.J.: Interactions between coincident and orthogonal cues to texture boundaries. Percep and Psychophys 62, 1019–1038

    Google Scholar 

  32. Feldman, H., Friston, K.J.: Attention, uncertainty, and free-energy. Frontiers in Human Neuroscience 4, 215 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William A. Phillips .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Phillips, W.A. (2013). The Coordination of Probabilistic Inference in Neural Systems. In: Dodig-Crnkovic, G., Giovagnoli, R. (eds) Computing Nature. Studies in Applied Philosophy, Epistemology and Rational Ethics, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37225-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37225-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37224-7

  • Online ISBN: 978-3-642-37225-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics