Advertisement

The Coordination of Probabilistic Inference in Neural Systems

  • William A. Phillips
Part of the Studies in Applied Philosophy, Epistemology and Rational Ethics book series (SAPERE, volume 7)

Abstract

Life, thought of as adaptively organised complexity, depends upon information and inference, which is nearly always inductive, because the world, though lawful, is far from being wholly predictable. There are several influential theories of probabilistic inference in neural systems, but here I focus on the theory of Coherent Infomax, and its relation to the theory of free energy reduction. Coherent Infomax shows, in principle, how life can be preserved and improved by coordinating many concurrent inferences. It argues that neural systems combine local reliability with flexible, holistic, context-sensitivity. What this perspective contributes to our understanding of neuronal inference is briefly outlined by relating it to cognitive and neurophysiological studies of context-sensitivity and gain-control, psychotic disorganization, theories of the Bayesian brain, and predictive coding. Limitations of the theory and unresolved issues are noted, emphasizing those that may be of interest to philosophers, and including the possibility of major transitions in the evolution of inferential capabilities.

Keywords

Probabilistic inference Coherent Infomax free energy reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Phillips, W.A., von der Malsburg, C., Singer, W.: Dynamic coordination in brain and mind. In: Von der Malsburg, C., Phillips, W.A., Singer, W. (eds.) Dynamic Coordination in the Brain: From Neurons to Mind. Strüngmann forum report, vol. 5, ch.1, pp. 1–24. MIT Press, Cambridge (2010)Google Scholar
  2. 2.
    Friston, K.J.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010)CrossRefGoogle Scholar
  3. 3.
    Phillips, W.A., Kay, J., Smyth, D.: The discovery of structure by multi-stream networks of local processors with contextual guidance. Network-Comp. Neural Systems 6, 225–246 (1995)MATHCrossRefGoogle Scholar
  4. 4.
    Kay, J., Floreano, D., Phillips, W.A.: Contextually guided unsupervised learning using local multivariate binary processors. Neural Networks 11, 117–140 (1998)CrossRefGoogle Scholar
  5. 5.
    Kay, J., Phillips, W.A.: Coherent infomax as a computational goal for neural systems. B. Math. Biol. 73, 344–372 (2011), doi:10.1007/s11583-010-9564-xMathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Jaynes, E.T.: Probability Theory: The Logic of Science, Edited by G. Larry Bretthorst. Cambridge University Press, Cambridge (2003)MATHCrossRefGoogle Scholar
  7. 7.
    Engel, C., Singer, W.: Better than Conscious? Strüngmann forum report, vol. 1. MIT Press, Cambridge (2008)Google Scholar
  8. 8.
    Yuille, A., Kersten, D.: Vision as Bayesian inference: analysis by synthesis? Trends Cogn. Sci. 10(7), 301–308 (2006)CrossRefGoogle Scholar
  9. 9.
    Knill, D.C., Pouget, A.: The Bayesian Brain: the role of uncertainty in neural coding and computation. Trends Neurosci. 27, 712–719Google Scholar
  10. 10.
    Rao, R.P., Ballard, D.H.: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2(1), 79–87 (1999/2004)CrossRefGoogle Scholar
  11. 11.
    Barlow, H.B.: Inductive inference, coding, perception, and language. Perception 3, 123–134 (1974)CrossRefGoogle Scholar
  12. 12.
    Barlow, H.B.: Possible principles underlying the transformations of sensory messages. In: Rosenblith, W. (ed.) Sensory Communication, pp. 217–234. MIT Press, Cambridge (1961)Google Scholar
  13. 13.
    Linsker, R.: Perceptual neural organization: some approaches based on network models and information theory. Annu. Rev. Neurosci. 13, 257–281 (1990)CrossRefGoogle Scholar
  14. 14.
    Wolpert, D.M., Diedrichsen, J., Flanagan, J.R.: Principles of sensorimotor learning. Nat. Rev. Neurosci. (in press) Google Scholar
  15. 15.
    Friston, K., Kilner, J., Harrison, L.: A free energy principle for the brain. J. Physiol. Paris 100(1-3), 70–87 (2006)CrossRefGoogle Scholar
  16. 16.
    Friston, K.J., Stephan, K.E.: Free-energy and the brain. Synthese 159, 417–458 (2007)CrossRefGoogle Scholar
  17. 17.
    Phillips, W.A., Singer, W.: In search of common foundations for cortical computation. Behav. Brain Sci. 20, 657–722 (1997)CrossRefGoogle Scholar
  18. 18.
    von der Malsburg, C., Phillips, W.A., Singer, W. (eds.): Dynamic coordination in the brain: from neurons to mind. Strüngmann forum report, vol. 5. MIT Press, Cambridge (2010)Google Scholar
  19. 19.
    Phillips, W.A., Silverstein, S.M.: Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behav. Brain Sci. 26, 65–138 (2003)Google Scholar
  20. 20.
    Phillips, W.A.: Self-organized complexity and Coherent Infomax from the viewpoint of Jaynes’s probability theory. Information 3(1), 1–15 (2012), doi:10.3390/info3010001CrossRefGoogle Scholar
  21. 21.
    Clark, A.: Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. (in press)Google Scholar
  22. 22.
    Spratling, M.W.: Predictive-coding as a model of biased competition in visual attention. Vis. Res. 48, 1391–1408 (2008)CrossRefGoogle Scholar
  23. 23.
    Wacongne, C., Changeaux, J.-P., Deheane, S.: A neuronal model of predictive coding accounting for the mismatch negativity. J. Neurosci. 32, 3665–3678 (2012)CrossRefGoogle Scholar
  24. 24.
    Szmatháry, E., Maynard Smith, J.: The major evolutionary transitions. Nature 374, 227–232 (1995)CrossRefGoogle Scholar
  25. 25.
    Ginter, F., Boberg, J., Jarvinen, J., Salakoski, T.: New techniques for disambiguation in natural language and their application to biological text. J. Mach. Learn. Res. 5, 605–621 (2004)MathSciNetGoogle Scholar
  26. 26.
    Phillips, W.A., Chapman, K.L.S., Berry, P.D.: Size perception is less context-sensitive in males. Perception 33, 79–86 (2004)CrossRefGoogle Scholar
  27. 27.
    Doherty, M.J., Tsuji, H., Phillips, W.A.: The context-sensitivity of visual size perception varies across cultures. Perception 37, 1426–1433 (2008)CrossRefGoogle Scholar
  28. 28.
    Uhlhaas, P.J., Phillips, W.A., Mitchell, G., Silverstein, S.M.: Perceptual grouping in disorganized schizophrenia. Psychiatry Research 145, 105–117 (2006)CrossRefGoogle Scholar
  29. 29.
    Doherty, M.J., Campbell, N.M., Tsuji, H., Phillips, W.A.: The Ebbinghaus illusion deceives adults but not young children. Developmental Science, 1–8 (2009), doi:10.1111/j.1467-7687.2009.00931.xGoogle Scholar
  30. 30.
    Fiorillo, C.D.: On the need for a unified and Jaynesian definition of probability and information within neuroscience. Information 3, 175–203 (2012)CrossRefGoogle Scholar
  31. 31.
    Phillips, W.A., Craven, B.J.: Interactions between coincident and orthogonal cues to texture boundaries. Percep and Psychophys 62, 1019–1038Google Scholar
  32. 32.
    Feldman, H., Friston, K.J.: Attention, uncertainty, and free-energy. Frontiers in Human Neuroscience 4, 215 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of StirlingStirlingUK
  2. 2.Frankfurt Institute of Advanced StudiesFrankfurt am MainGermany

Personalised recommendations