A Framework for Computing Like Nature

  • Ron Cottam
  • Willy Ranson
  • Roger Vounckx
Part of the Studies in Applied Philosophy, Epistemology and Rational Ethics book series (SAPERE, volume 7)


We address the context within which ‘Natural’ computation can be carried out, and conclude that a birational ecosystemic hierarchical framework would provide for computation which is closer to Nature. This presages a major philosophical change in the way Science can be carried out. A consequence is that all system properties appear as intermediates between unattainable dimensional extremes; even existence itself. We note that Classical and Quantum mechanical paradigms make up a complementary pair. What we wish to do is to bring all of Science under a generalized umbrella of entity and its ecosystem, and then characterize different types of entity by their relationships with their relevant ecosystems. The most general way to do this is to move the ecosystemic paradigm up to the level of its encompassing logic, creating a complementary pair of conceivably different logics – one for the entity we are focusing on; one for the ecosystem within which it exists – and providing for their quasi-autonomous birational interaction.


natural computation modeling ecosystem birationality hierarchy entropy life 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liboff, R.L.: Introductory Quantum Mechanics. Addison Wesley Longman, Boston (2002)Google Scholar
  2. 2.
    Cronan, C.S.: Introduction to Ecology & Ecosystems Analysis. Shaw-Ferguson Environmental Publications, Orono (1996)Google Scholar
  3. 3.
    Berto, F.: There’s Something about Gödel: The Complete Guide to the Incompleteness Theorem. John Wiley and Sons, Hoboken (2010)Google Scholar
  4. 4.
    Rosen, R.: Life Itself. Columbia University Press, New York (1991)Google Scholar
  5. 5.
    Hardie, R.P., Gaye, R.K.: Aristotle: Physics,
  6. 6.
    Cottam, R., Ranson, W., Vounckx, R.: Re-mapping Robert Rosen’s (M,R) Systems. Chemistry and Biodiversity 4, 2352–2368 (2007)CrossRefGoogle Scholar
  7. 7.
    Einstein, A.: Relativity: The Special and General Theory. Translated by Robert W. Lawson. Henry Holt and Company, New York (1920)Google Scholar
  8. 8.
  9. 9.
    Cottam, R., Ranson, W., Vounckx, R.: A Diffuse Biosemiotic Model for Cell-to-Tissue Computational Closure. BioSystems 55, 159–171 (2000)CrossRefGoogle Scholar
  10. 10.
    Fisch, M.H., Ketner, K.L., Kloesel, C.J.W. (eds.): Peirce, Semeiotic and Pragmatism. Indiana University Press, Bloomington (1986)Google Scholar
  11. 11.
    von Uexküll, T.: The Sign Theory of Jakob von Uexküll. In: Krampen, M., Oehler, K., Posner, R., Sebeok, T.A., von Uexküll, T. (eds.) Classics of Semiotics, pp. 147–179. Plenum Press, New York (1987)Google Scholar
  12. 12.
    Agamben, G.: The Open: Man and Animal. Translated by Kevin Attell. Stanford University Press, Stanford (2004)Google Scholar
  13. 13.
    Carson, R.: Silent Spring. Houghton Mifflin, Boston (1962)Google Scholar
  14. 14.
    von Foerster, H.: Cybernetics of Cybernetics. University of Illinois Press, Urbana (1974)MATHGoogle Scholar
  15. 15.
    Koffka, K.: Perception: An Introduction to the Gestalt-Theory. Psychological Bulletin 19, 531–585 (1922)CrossRefGoogle Scholar
  16. 16.
    Deacon, T.W.: Incomplete Nature: How Mind Evolved from Matter. W. W. Norton & Co., New York (2012)Google Scholar
  17. 17.
    Root-Bernstein, R.S., Dillon, P.F.: Molecular Complementarity I: the Complementarity Theory of the Origin and Evolution of Life. Journal of Theoretical Biology 188, 447–479 (1997)CrossRefGoogle Scholar
  18. 18.
    Cottam, R., Ranson, W.: A Biosemiotic View on Consciousness Derived from System Hierarchy. In: Pereira Jr., A., Lehmann, D. (eds.) The Unity of Mind, Brain and World: Current Perspectives on a Science of Consciousness. Cambridge University Press, Cambridge (2012)Google Scholar
  19. 19.
    Brenner, J.E.: Logic in Reality. Springer, Berlin (2008)CrossRefGoogle Scholar
  20. 20.
    Brenner, J.E.: The Logical Dynamics of Information: Deacon’s “Incomplete Nature”. Information 3, 1–36 (2012)CrossRefGoogle Scholar
  21. 21.
    Matsuno, K.: The Internalist Stance: a Linguistic Practice Enclosing Dynamics. Annals of the New York Academy of Sciences 901, 322–349 (2000)Google Scholar
  22. 22.
    Cottam, R., Ranson, W., Vounckx, R.: Towards Cross-modeling between Life and Solid State Physics. In: Simeonov, P.L., Smith, L., Ehresmann, A.C. (eds.) Integral Biomathics: Tracing the Road to Reality, pp. 85–95. Springer, Berlin (2012)CrossRefGoogle Scholar
  23. 23.
    Cottam, R., Ranson, W., Vounckx, R.: Diffuse Rationality in Complex Systems. In: Bar-Yam, Y., Minai, A. (eds.) Unifying Themes in Complex Systems, vol. II, pp. 355–362. Westview Press, Boulder (2004)Google Scholar
  24. 24.
    Cottam, R., Ranson, W., Vounckx, R.: Localisation and nonlocality in computation. In: Holcombe, M., Paton, R. (eds.) Information Processing in Cells and Tissues, pp. 197–202. Plenum Press, New York (1997)Google Scholar
  25. 25.
    Cottam, R., Ranson, W., Vounckx, R.: Autocreative Hierarchy I: Structure - Ecosystemic Dependence and Autonomy. SEED J. 4, 24–41 (2004)Google Scholar
  26. 26.
    Wong, E.: Harmonizing Yin and Yang. Shambhalla Publications, Boston (1997)Google Scholar
  27. 27.
    Cottam, R., Ranson, W., Vounckx, R.: Sapient Structures for Intelligent Control. In: Mayorga, R.V., Perlovsky, L.I. (eds.) Toward Artificial Sapience: Principles and Methods for Wise Systems, pp. 175–200. Springer, New York (2008)CrossRefGoogle Scholar
  28. 28.
    Brenner, J.E.: The Philosophical Logic of Stéphane Lupasco. Logic and Logical Philosophy 19, 243–284 (2010)MathSciNetMATHGoogle Scholar
  29. 29.
    Mittelstaedt, P., Prieur, A., Schieder, R.: Unsharp Particle-Wave Duality in a Photon Split Beam Experiment. Foundations of Physics 17, 891–903 (1987)CrossRefGoogle Scholar
  30. 30.
    Erskine, R., Smith, M. (eds.): The Bletchley Park Codebreakers. Biteback Publishing Ltd., London (2011)Google Scholar
  31. 31.
    Landsberg, P.T.: Is Equilibrium Always an Entropy Maximum? J. Stat. Phys. 35, 159–169 (1984)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Landsberg, P.T.: Can Entropy and “Order” Increase Together? Phys. Lett. A 102, 171–173 (1984)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Kuhn, T.: Black-Body Theory and the Quantum Discontinuity: 1894–1912. Clarendon Press, Oxford (1978)Google Scholar
  34. 34.
    Planck, M.: The Theory of Heat Radiation. Translated by Masius, M.P., 2nd edn. Blakiston’s Son & Co., Philadelphia (1914)Google Scholar
  35. 35.
    Hagen, J.B.: An Entangled Bank: The Origins of Ecosystem Ecology. Rutgers University Press, New Brunswick (1992)Google Scholar
  36. 36.
    Jeavons, A.P., Saunders, G.A.: Correlation Between the Galvanomagnetic Effects and the Fermi Surface of Arsenic. Physics Letters A 27, 19–20 (1968)CrossRefGoogle Scholar
  37. 37.
    Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.: Teleporting an Unknown Quantum State via Dual Classical and EPR Channels. Phys. Rev. Lett. 70, 1895–1899 (1993)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Huygens, C.: Traité de la Lumiere. Pieter van der Aa, Leiden (1690)Google Scholar
  39. 39.
    Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: a New Approach. Cambridge University Press, New York (1996)CrossRefGoogle Scholar
  40. 40.
    Cottam, R., Ranson, W., Vounckx, R.: The Mind as an Evolving Anticipative Capability. J. Mind Theory, 39–97 (2008)Google Scholar
  41. 41.
    Cottam, R., Saunders, G.A.: The Elastic Constants of GaAs from 2K to 320K. J. Phys. C Solid State 6, 2015–2118 (1973)Google Scholar
  42. 42.
    Cottam, R., Ranson, W., Vounckx, R.: A Biologically Consistent Hierarchical Framework for Self-referencing Survivalist Computation. In: Dubois, D.M. (ed.) Computing Anticipatory Systems: CASYS 1999 – 3rd International Conference, AIP Conference Proceedings 465, pp. 252–262. AIP, Woodbury (2000)Google Scholar
  43. 43.
    Railsback, B.: Slime Molds (the Mycetozoa or Fungus Animals),
  44. 44.
    Salthe, S.N.: Hierarchical Structures. Axiomathes 22 (2012) (Online first March 9, 2012: accessed July 5, 2012) Google Scholar
  45. 45.
  46. 46.
    Jagers op Akkerhuis, G.: The Operator Hierarchy: a Chain of Closures linking Matter, Life and Artificial Intelligence. Radboud University Press, Nijmegen (2010)Google Scholar
  47. 47.
    Schrödinger, E.: What is Life? The Physical Aspect of the Living Cell. Cambridge University Press, Cambridge (1944) (reprinted 1992) Google Scholar
  48. 48.
    Watson, J.D., Berry, A.: DNA: the Secret of Life. Albert A. Knopf, New York (2004)Google Scholar
  49. 49.
    Cottam, R., Ranson, W., Vounckx, R.: Living in Hyperscale: Internalization as a Search for Unification. In: Wilby, J., Allen, J.K., Loureiro-Koechlin, C. (eds.) Proceedings of the 50th Annual Conference of the International Society for the Systems Sciences, paper #2006-362, pp. 1–22. ISSS, Asilomar (2006)Google Scholar
  50. 50.
    Salthe, S.N.: Development and Evolution: Complexity and Change in Biology. MIT Press, Cambridge (1993)Google Scholar
  51. 51.
    Salthe, S.N.: Evolving Hierarchical Systems. Columbia University Press, New York (1985)Google Scholar
  52. 52.
    Levins, R.: Evolution in Changing Environments. Princeton University Press, Princeton (1968)Google Scholar
  53. 53.
    Gutowitz, H.A., Langton, C.G.: Mean Field Theory of the Edge of Chaos. In: Morán, F., Merelo, J.J., Moreno, A., Chacon, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 52–64. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  54. 54.
    Cottam, R., Ranson, W., Vounckx, R.: Life and Simple Systems. Sys. Res. Behav. Sci. 22, 413–430 (2005)CrossRefGoogle Scholar
  55. 55.
    Dodig-Crnkovic, G.: Investigation into Information Semantics and Ethics of Computing. Mälardalen University Press Dissertations #33, Mälardalen (2006)Google Scholar
  56. 56.
    Kurzweil, R.: The Age of Intelligent Machines. MIT Press, Cambridge (1992)Google Scholar
  57. 57.
    Lloyd, S.: Programming the Universe: A Quantum Computer Scientist Takes on the Cosmos. Alfred A. Knopf, New York (2006)Google Scholar
  58. 58.
    Langloh, N., Cottam, R., Vounckx, R., Cornelis, J.: Towards Distributed Statistical Processing – Aquarium: A Query and Reflection Interaction Using Magic: Mathematical Algorithms Generating Interdependent Confidences. In: Smith, S.D., Neale, R.F. (eds.) ESPRIT Basic Research Series, Optical Information Technology, pp. 303–319. Springer, Berlin (1993)CrossRefGoogle Scholar
  59. 59.
    Singh, S.: Big Bang: the Origin of the Universe. HarperCollins, New York (2004)Google Scholar
  60. 60.
    Adams, F.C., Laughlin, G.: A Dying Universe: the Long-term Fate and Evolution of Astrophysical Objects. Rev. Mod. Phys. 69, 337–372 (1997)CrossRefGoogle Scholar
  61. 61.
    Mandelbrot, B.: Fractals and Chaos. Springer, Berlin (2004)MATHGoogle Scholar
  62. 62.
    Collier, J.D.: Autonomy in Anticipatory Systems: Significance for Functionality, Intentionality and Meaning. In: Dubois, D.M. (ed.) Computing Anticipatory Systems: CASYS 1998 - 2nd International Conference, AIP Conference Proceedings 465, pp. 75–81. AIP, Woodbury (1999)CrossRefGoogle Scholar
  63. 63.
    Hardesty, L.: Chips as Mini Internets: Data-routing Techniques that Undergird Internet could Increase Efficiency of Multicore Chips,
  64. 64.
    Mikulecky, D.C.: Editorial. Chemistry and Biodiversity 4, 2269–2271 (2007)CrossRefGoogle Scholar
  65. 65.
    Golshan, K.: Physical Design Essentials: an ASIC Design Implementation Perspective. Springer, New York (2007)CrossRefGoogle Scholar
  66. 66.
    Chalmers, D.J.: The Conscious Mind: In Search of a Fundamental Theory, pp. 330–331. Oxford University Press, Oxford (1996)MATHGoogle Scholar
  67. 67.
    Darwin, C.: On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray, London (1859)Google Scholar
  68. 68.
    Sigmund, K.: Games of Life: Explorations in Ecology, Evolution, and Behavior. Oxford University Press, New York (1993)Google Scholar
  69. 69.
    Zhuo, Z., Cai, S.-M., Fu, Z.-Q., Zhang, J.: Hierarchical Organization of Brain Functional Networks during Visual Tasks. Phys. Rev. E 84, 031923 (2011)Google Scholar
  70. 70.
    Rossion, B., Dricot, L., Goebel, R., Busigny, T.: Holistic Face Categorization in Higher Order Visual Areas of the Normal and Prosopagnosic Brain: Toward a Non-hierarchical View of Face Perception. Front Hum. Neurosci. 4, 225 (2010)Google Scholar
  71. 71.
    Katsumori, M.: Niels Bohr’s Complementarity: Its Structure, History, and Intersections with Hermeneutics and Deconstruction. Boston Studies in the Philosophy and History of Science, vol. 286. Springer, New York (2011)CrossRefGoogle Scholar
  72. 72.
    Tononi, G.: An Information Integration Theory of Consciousness. BMC Neuroscience 5, 42 (2004)CrossRefGoogle Scholar
  73. 73.
    Schroeder, M.J.: The role of information integration in demystification of holistic methodology. In: Simeonov, P.L., Smith, L.S., Ehresmann, A.C. (eds.) Integral Biomathics: Tracing the Road to Reality, vol. 106, pp. 283–296. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  74. 74.
    Lewes, G.H.: Problems of Life and Mind (First Series), vol. 2, p. 412. Trübner, London (1875)Google Scholar
  75. 75.
    Haken, H.: The Science of Structure: Synergetics. Prentice Hall, New York (1984)Google Scholar
  76. 76.
    Cottam, R., Ranson, W., Vounckx, R.: Emergence: Half a Quantum jump? Acta Polytech Sc. Ma 91, 12–19 (1998)Google Scholar
  77. 77.
    Nicolis, G., Prigogine, I.: Exploring Complexity, p. 21. Freeman, New York (1989)Google Scholar
  78. 78.
    Cottam, R., Ranson, W., Vounckx, R.: Life as its Own Tool for Survival. In: Allen, J.K., Hall, M.L.W., Wilby, J. (eds.) Proceedings of the 43rd Annual Conference of the International Society for the Systems Sciences, paper #99268, pp. 1–12. ISSS, Asilomar (1999)Google Scholar
  79. 79.
    LeDoux, J.E.: Brain Mechanisms of Emotion and Emotional Learning. Current Opinion in Neurobiology 2, 191–197 (1992)MathSciNetCrossRefGoogle Scholar
  80. 80.
    Bohm, D., Hiley, B.J.: The Undivided Universe. Routledge, London (1993)Google Scholar
  81. 81.
    Bohm, D.: Wholeness and the Implicate Order. Routledge, London (1980)Google Scholar
  82. 82.
    Pirsig, R.M.: Lila: an Enquiry into Morals, p. 176. Bantam Press, New York (1991)Google Scholar
  83. 83.
    Nicolescu, B.: Manifesto of Transdisciplinarity. State University of New York Press, Albany (2002)Google Scholar
  84. 84.
    Langton, C.G.: Computation at the Edge of Chaos: Phase Transitions and Emergent Computation. Physica D 42, 12–37 (1990)MathSciNetCrossRefGoogle Scholar
  85. 85.
    Sabelli, H.C.: Bios: a Study of Creation. World Scientific Publishing Co., Singapore (2005)Google Scholar
  86. 86.
    Rashevsky, N.: Topology and Life: In Search of General Mathematical Principles in Biology and Sociology. Bulletin of Mathematical Biophysics 16, 317–348 (1954)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.The Living Systems Project, Dept. of Electronics and InformaticsVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations