From the Closed Classical Algorithmic Universe to an Open World of Algorithmic Constellations

Part of the Studies in Applied Philosophy, Epistemology and Rational Ethics book series (SAPERE, volume 7)

Abstract

In this paper we analyze methodological and philosophical implications of algorithmic aspects of unconventional computation. At first, we describe how the classical algorithmic universe developed and analyze why it became closed in the conventional approach to computation. Then we explain how new models of algorithms turned the classical closed algorithmic universe into the open world of algorithmic constellations, allowing higher flexibility and expressive power, supporting constructivism and creativity in mathematical modeling. As Gödel’s undecidability theorems demonstrate, the closed algorithmic universe restricts essential forms of mathematical cognition. In contrast, the open algorithmic universe, and even more the open world of algorithmic constellations, remove such restrictions and enable new, richer understanding of computation.

Keywords

Unconventional algorithms unconventional computing algorithmic constellations Computing beyond Turing machine model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frege, G.: Grundgesetze der Arithmetik, Begriffschriftlich Abgeleitet, Viena (1893/1903)Google Scholar
  2. 2.
    Nelson, R.J.: Church’s thesis and cognitive science. Notre Dame J. of Formal Logic 28(4), 581–614 (1987)MATHCrossRefGoogle Scholar
  3. 3.
    Kalmar, L.: An argument against the plausibility of Church’s thesis. In: Constructivity in Mathematics, pp. 72–80. North-Holland Publishing Co., Amsterdam (1959)Google Scholar
  4. 4.
    Gödel, K.: Some Remarks on the Undecidability Results (1986–1995); Gödel, K.: Collected Works, vol. II, pp. 305–306. Oxford University Press, Oxford (1972)Google Scholar
  5. 5.
    Burgin, M.: Super-recursive Algorithms. Springer, Heidelberg (2005)MATHGoogle Scholar
  6. 6.
    Sloman, A.: The Irrelevance of Turing machines to AI Aaron Sloman. In: Scheutz, M. (ed.) Computationalism: New Directions. MIT Press (2002), http://www.cs.bham.ac.uk/~axs/
  7. 7.
    Shannon, C.: Mathematical Theory of the Differential Analyzer. J. Math. Physics 20, 337–354 (1941)MathSciNetMATHGoogle Scholar
  8. 8.
    Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. III. Oxford University Press (1994)Google Scholar
  9. 9.
    Edalat, A.: Domains for computation in mathematics, physics and exact real arithmetic. Bulletin of Symbolic Logic 3, 401–452 (1997)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Ko, K.: Computational Complexity of Real Functions. Birkhauser, Boston (1991)CrossRefGoogle Scholar
  11. 11.
    Weihrauch, K.: Computable Analysis. An Introduction. Springer, Heidelberg (2000)Google Scholar
  12. 12.
    Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. In: Perspectives in Mathematical Logic, vol. 1, Springer, Berlin (1989)Google Scholar
  13. 13.
    Burgin, M.: The Notion of Algorithm and the Turing-Church Thesis. In: Proceedings of the VIII International Congress on Logic, Methodology and Philosophy of Science, Moscow, vol. 5, part 1, pp. 138–140 (1987)Google Scholar
  14. 14.
    Burgin, M.: Nonlinear Phenomena in Spaces of Algorithms. International Journal of Computer Mathematics 80(12), 1449–1476 (2003)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematics und ver-wandter System I. Monatshefte für Mathematik und Physik 38, 173–198 (1931)CrossRefGoogle Scholar
  16. 16.
    Smullian, R.M.: Theory of Formal Systems. Princeton University Press (1962)Google Scholar
  17. 17.
    Mathias, A.R.D.: The Ignorance of Bourbaki. Physis Riv. Internaz. Storia Sci (N.S.) 28, 887–904 (1991)MathSciNetMATHGoogle Scholar
  18. 18.
    Rogers, H.: Theory of Recursive Functions and Effective Computability. MIT Press, Cambridge Massachusetts (1987)Google Scholar
  19. 19.
    Burgin, M.: Arithmetic Hierarchy and Inductive Turing Machines. Notices of the Russian Academy of Sciences 299(3), 390–393 (1988)MathSciNetGoogle Scholar
  20. 20.
    Penrose, R.: The Emperor’s New Mind. Oxford University Press, Oxford (1989)Google Scholar
  21. 21.
    Burgin, M.: Topological Algorithms. In: Proceedings of the ISCA 16th International Conference “Computers and their Applications”, pp. 61–64. ISCA, Seattle (2001)Google Scholar
  22. 22.
    Rossini, C.: Access to Knowledge as a Foundation for an Open World. EDUCAUSE Review 45(4), 60–68 (2010)Google Scholar
  23. 23.
    Budapest Open Access Initiative, http://www.soros.org/openaccess/read.shtml
  24. 24.
    Nielsen, M.: Reinventing Discovery: The New Era of Networked Science. Princeton University Press, Princeton and Oxford (2012)Google Scholar
  25. 25.
    Dodig-Crnkovic, G., Muller, V.C.: A Dialogue Concerning Two World Systems. In: Information and Computation, pp. 107–148. World Scientific, New York (2011)Google Scholar
  26. 26.
    Rozenberg, G., Bäck, T.H.W., Kok, J.N. (eds.): Handbook of Natural Computing. Springer, Heidelberg (2012)MATHGoogle Scholar
  27. 27.
    Dodig Crnkovic, G., Burgin, M.: Unconventional Algorithms: Complementarity of Axiomatics and Construction. Entropy, Special issue “Selected Papers from the Symposium on Natural/Unconventional Computing and its Philosophical Significance” (forthcoming) (2012), http://www.mdpi.com/journal/entropy/special_issues/unconvent_computing
  28. 28.
    Dodig-Crnkovic, G.: Significance of Models of Computation from Turing Model to Natural Computation. Minds and Machines 21(2), 301 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Dept. of MathematicsUCLALos AngelesUSA
  2. 2.Department of Computer Science and Networks, School of Innovation, Design and EngineeringMälardalen UniversityVästeråsSweden

Personalised recommendations