Does the Principle of Computational Equivalence Overcome the Objections against Computationalism?

  • Alberto Hernández-Espinosa
  • Francisco Hernández-Quiroz
Part of the Studies in Applied Philosophy, Epistemology and Rational Ethics book series (SAPERE, volume 7)

Abstract

Computationalism has been variously defined as the idea that the human mind can be modelled by means of mechanisms broadly equivalent to Turing Machines. Computationalism’s claims have been hotly debated and arguments against and for have drawn extensively from mathematics, cognitive sciences and philosophy, although the debate is hardly settled. On the other hand, in his 2002 book New Kind of Science, Stephen Wolfram advanced what he called the Principle of Computational Equivalence (PCE), whose main contention is that fairly simple systems can easily reach very complex behaviour and become as powerful as any possible system based on rules (that is, they are computationally equivalent). He also claimed that any natural (and even human) phenomenon can be explained as the interaction of very simple rules. Of course, given the universality of Turing Machine-like mechanisms, PCE could be considered simply a particular brand of computationalism, subject to the same objections as previous attempts. In this paper we analyse in depth if this view of PCE is justified or not and hence if PCE can overcome some criticisms and be a different and better model of the human mind.

Keywords

Computationalism Computational Theory of Mind Representationalism Principle of Computational Equivalence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burge, T.: Individualism and the mental. In: French, P., Euhling, T., Wettstein, H. (eds.) Studies in Epistemology, Midwest Studies in Philosophy, vol. 4. University of Minnesota Press, Minneapolis (1979)Google Scholar
  2. 2.
    Burge, T.: Individualism and psychology. Philosophical Review 95(1), 3–45 (1986)CrossRefGoogle Scholar
  3. 3.
    Cook, M.: Universality in Elementary Cellular Automata. Complex Systems 15, 1–40 (2004)MathSciNetMATHGoogle Scholar
  4. 4.
    Cordeschi, R.: Computacionalism under attack. Cartographies of the Mind, Chapter 3, 37–49 (2007)CrossRefGoogle Scholar
  5. 5.
    Dodig-Crnkovic, G., Mueller, V.: A dialogue concerning two world systems: info-computational vs. mechanistic. In: Dodig Crnkovic, G., Burgin, M. (eds.) Information and Computation, pp. 149–184. World Scientific Publishing Co., Inc., Singapore (2009)Google Scholar
  6. 6.
    Dodig-Crnkovic, G.: Biological Information and Natural Computation. In: Vallverdú, J. (ed.) Thinking Machines and the Philosophy of Computer Science: Concepts and Principles, Information Science Reference. IGI Global, Hershey (2010)Google Scholar
  7. 7.
    Dodig-Crnkovik, G.: Dynamics of Information as Natural Computation. Information 2(3), 460–477 (2011), doi:10.3390/info2030460CrossRefGoogle Scholar
  8. 8.
    Dodig-Crnkovic, G.: Physical Computation as Dynamics of Form that Glues Everything Together. Information 3(2), 204–218 (2012)CrossRefGoogle Scholar
  9. 9.
    Dreyfus, H.: What Computers Can’t Do. Harper and Row, Nueva York (1972)Google Scholar
  10. 10.
    Dreyfus, H.: What Computers Still Can’t Do. MIT Press, Cambridge (1992)Google Scholar
  11. 11.
    Fodor, J.: Metodological silopsism considered as a research strategy in cognitive science. Behavioral and Brain Sciences 3, 63–73Google Scholar
  12. 12.
    Fodor, J.A.: Representations: Philosophical Essays on the Foundations of Cognitive Science. MIT Press, Cambridge (1981)Google Scholar
  13. 13.
    Fodor, J.A.: Theory of Content and Other Essays. MIT Press, Cambridge (1990)Google Scholar
  14. 14.
    Fodor, J.A.: The Elm and the Expert. MIT Press, Cambridge (1993)Google Scholar
  15. 15.
    Fodor, J.A.: Concepts. Clarendon Press, Oxford (1998)CrossRefGoogle Scholar
  16. 16.
    Garrido, A.: Connectionism vs. Computationalism Theory of Mind. BRAIN (Broad Research in Artificial Intelligence and Neuroscience)  1(1) (2010)Google Scholar
  17. 17.
    Horst, S.: Mind Computationalism Theory. University of California Press, Berkeley (1986)Google Scholar
  18. 18.
    Horst, S.: Symbols, Computation and Intentionality: A Critique of the Computational Theory of Mind. University of California Press, Berkeley (1996)Google Scholar
  19. 19.
    The Stanford Encyclopedia of Philosophy, http://plato.stanford.edu/
  20. 20.
    Kelemen, J., Alica, K.: The New Computationalism: a Lesson from Embodied Agents. Silesram University, Institute of Computer Science Press, Opava, Slovakia (2008)Google Scholar
  21. 21.
    McCulloch, W.S., Pitts, W.H.: A Logical Calculus of the Ideas Immanent in Nervous Activity. Bulletin of Mathematical Biophysics 7, 115–133 (1943)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Piccinini, G.: The first Computational theory of mind and brain: a close look at McCulloch and Pitts’s Logical calculus of ideas immanent in nervous activity. Synthese 141, 175–215 (2004)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Piccinini, G.: Computationalism, the Church-Turing thesis, and the Church-Turing falacy. Synthese 154(1), 97–120 (2007)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Piccinini, G.: Computatonalism in the Philosophy of Mind. Philosophy Compass, Journal Compilation 4 (2009)Google Scholar
  25. 25.
    Pinker, S.: The Language Instinct, the New Science of Language and Mind. Penguin, London (1995)Google Scholar
  26. 26.
    Pinker, S.: How the Mind Works. Penguin, London (1997)Google Scholar
  27. 27.
    Putnam, H.: The Meaning of “Meaning”. In: Gunderson, E.K. (ed.) Language, Mind and Knowledge. Minnesota Studies in the Philosophy of Science, vol. 7, University of Minnesota Press, Minneapolis (1975)Google Scholar
  28. 28.
    Sayre, K.: Intentionality and information processing: An alternative model for cognitive science. Behavioral and Brain Sciences 9(1), 121–138 (1986)CrossRefGoogle Scholar
  29. 29.
    Searle, J.: Minds, brains and programs. Behavioral and Brain Sciences 3, 417–424 (1980)CrossRefGoogle Scholar
  30. 30.
    Searle, J.: Is the Brain a digital computer? Proceedings and Addresses of American Philosophical Association 64, 21–37 (1990)CrossRefGoogle Scholar
  31. 31.
    Smith, A.: Universality of Wolfram’s 2,3 Turing Machine (2007)Google Scholar
  32. 32.
    Sutner, K.: Cellular automata and intermediate degrees. Theoretical Computer Science 296, 365–375 (2003)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Sutner, K.: Universality and Cellular Automata. MCU, 50–59 (2004)Google Scholar
  34. 34.
    Turing, A.M.: Lecture to the London Mathematical Society on 20 February 1947. In: Ince, D. (ed.) Mechanical Intelligence, pp. 87–105. North-Holland, Amsterdam (1947)Google Scholar
  35. 35.
    Turing, A.M.: Intelligent Machinery. In: Ince, D. (ed.) Mechanical Intelligence, pp. 87–106. North-Holland, Amsterdam (1948)Google Scholar
  36. 36.
    Turing, A.M.: Computing machinery and intelligence. Mind 59, 433–460 (1950)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Winograd, T., Flores, F.: Understanding Computers and Cognition. Ablex, Norwood (1986)MATHGoogle Scholar
  38. 38.
    Wolfram, S.: The New Kind of Science (2002) ISBN 1-57955-008-8Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alberto Hernández-Espinosa
    • 1
  • Francisco Hernández-Quiroz
    • 1
  1. 1.Departamento de Matemáticas, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaMexico

Personalised recommendations