Advertisement

Comparing GPS Radio Occultation Observations with Radiosonde Measurements in the Australian Region

  • R. NormanEmail author
  • J. Le Marshall
  • K. Zhang
  • C. S. Wang
  • B. A. Carter
  • W. Rohm
  • T. Manning
  • S. Gordon
  • Y. Li
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 139)

Abstract

GPS Radio Occultation (RO) is a robust space-based Earth observation technique, with the demonstrated potential for atmospheric profiling and meteorological applications. The GPS RO technique uses GPS receivers onboard Low Earth Orbit (LEO) satellites to measure the received radio signals from GPS satellites to obtain atmospheric profiles such as temperature, pressure, water vapour and electron concentration in the ionosphere using complicated atmospheric retrieval processes. The Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) was launched in April 2006. GPS RO data from this constellation of six LEO micro-satellites provides an observational data type for operational meteorology, providing significant information on the thermodynamic state of the atmosphere with the potential to improve atmospheric analyses and prognoses. Thus it is important to know and understand how COSMIC RO measurements compare to conventional atmospheric and meteorological sounding devices. In this study the COSMIC GPS RO temperature and pressure profiles are compared to those measured from radiosondes (Vaisala RS-92) in the Australian region.

Keywords

Radio occultation GPS Radiosonde Atmospheric remote sensing 

Notes

Acknowledgements

This work is supported by the Australian Space Research Program project of “Platform Technologies for Space, Atmosphere and Climate” endorsed to a research consortium led by RMIT University. We acknowledge the Taiwan’s National Space Organization (NSPO) and UCAR for COSMIC F3C mission data.

References

  1. Aparicio JM, Deblonde G (2008) Impact of the assimilation of CHAMP refractivity profiles on environment Canada global forecasts. Mon Weather Rev 136:257–275CrossRefGoogle Scholar
  2. Bird MK, Asmar SW, Brenle JP, Edenhofer P, Funke O, Patzoid M, Volland H (1992) Ulysses radio occultation observations of the Io plasma torus during the Jupiter encounter. Science 257:1531–1535CrossRefGoogle Scholar
  3. Buontempo C, Jupp A, Rennie MP (2008) Operational NWP assimilation of GPS radio occultation data. Atmos Sci Lett 9:129–133CrossRefGoogle Scholar
  4. Cucurull L, Derber JC, Treadon R, Purser RJ (2007) Assimilation of global positioning system radio occultation observations into NCEP’s global data assimilation system. Mon Weather Rev 135:3174–3193CrossRefGoogle Scholar
  5. Fjeldbo G, Kliore AJ, Eshleman VR (1971) The neutral atmosphere of Venus as studied with Mariner V radio occultation experiments. Astron J 76:123–140CrossRefGoogle Scholar
  6. Fu E, Zhang K, Marion K, Xu X, Marshall J, Rea A, Weymouth G, Kuleshov Y (2009) Assessing COSMIC GPS radio occultation derived atmospheric parameters using Australian radiosonde network data. Procedia Earth Planetary Sci 1:1054–1059CrossRefGoogle Scholar
  7. He W, Ho S-P, Chen H, Zhou X, Hunt D, Kuo Y-H (2009) Assessment of radiosonde temperature measurements in the upper troposphere and lower stratosphere using COSMIC radio occultation data. Geophys Res Lett 36:L17807. doi: 10.1029/2009GL038712 CrossRefGoogle Scholar
  8. Hajj GA, Ibanez-Meier R, Kursinski ER, Romans LJ (1994) Imaging the Ionosphere with global positioning system. Int J Imaging Syst Technol 5:174–184CrossRefGoogle Scholar
  9. Healy SB, Eyre JR (2000) Retrieving temperature, water vapour and surface pressure information from refractive index profiles derived by radio occultation: a simulation study. Q J R Meteorol Soc 126:1661–1683CrossRefGoogle Scholar
  10. Healy SB, Jupp A, Marquardt C (2005) Forecast impact experiment with GPS radio occultation measurements. Geophys Res Lett 32:L03804. doi: 10.1029/2004GL020806 CrossRefGoogle Scholar
  11. Healy SB, Thepauto JN (2006) Assimilation experiments with CHAMP GPS radio occultation measurements. Q J R Meteorol Soc 132:605–623CrossRefGoogle Scholar
  12. Hernandez-Pajares M, Juan JM, Sanz J (2000) Improving the Abel inversion by adding ground GPS data to LEO radio occultations in ionospheric sounding. Geophys Res Lett 27:2473–2476CrossRefGoogle Scholar
  13. Kursinski ER, Hajj GA, Bertiger WI, Leroy SS, Meehan TK, Romans LJ, Schofield JT, McCleese DJ, Melbourne WG, Thornton CL, Yunck TP, Eyre JR, Nagatani RN (1996) Initial results of radio occultation observations of Earth’s atmosphere using the global positioning system. Science 271:1107–10CrossRefGoogle Scholar
  14. Le Marshall J, Xiao Y, Norman R, Zhang K, Rea A, Cucurull L, Seecamp R, Steinle P, Puri K, Le T (2010) The beneficial impact of radio occultation observations on Australian region forecasts. Aust Meteorol Oceanogr J 60:121–125Google Scholar
  15. Le Marshall J, Xiao Y, Norman R, Zhang K, Rea A, Cucurull L, Seecamp R, Steinle P, Puri K, Le T (2012) The application of radio occultation for climate monitoring and numerical weather prediction in Australian region. Aust Meteorol Oceanogr J 62:323–334Google Scholar
  16. Leurs JK, Eskridge RE (1998) Use of radiosonde temperature data in climate studies. J Clim 11:1002–1019CrossRefGoogle Scholar
  17. Melbourne WG, Davis ES, Duncan CB, Hajj GA, Hardy KR, Kursinski ER, Meehan TK, Young LE, Yunck TP (1994) The application of spaceborne GPS to atmospheric limb sounding and global change monitoring. JPL Publ, Pasadena, pp 94–18Google Scholar
  18. Phinney RA, Anderson DL (1968) On the radio occultation method for studying planetary atmospheres. J Geophys Res 73:1819–27CrossRefGoogle Scholar
  19. Rennie MP (2010) The impact of GPS radio occultation assimilation at the Met Office. Q J R Meteorol Soc 136:116–131Google Scholar
  20. Rocken C, Anthes R, Exner M, Hunt D, Sokolovskiy S, Ware R, Gorbunov M, Schreiner W, Feng D, Herman B, Kuo Y, Zou X (1997) Analysis and validation of GPS/MET data in the neutral atmosphere. J Geophys Res 102:29849–66CrossRefGoogle Scholar
  21. Sun B, Reale A, Seidel DJ, Hunt DCC (2010) Comparing radiosonde and COSMIC atmospheric profile data to quantify differences among radiosonde types and the effects of imperfect collocation on comparison statistics. J Geophys Res 115, D23104CrossRefGoogle Scholar
  22. Wang J, Carlson DJ, Parsons DB, Hock TF, Lauritsen D, Cole HL, Beierle K, Chamberlain E (2003) Performance of operational radiosondes humidity sensors in direct comparison with a chilled mirror dew-point hygrometer and its climate implication. Geophys Res Lett 30(16):1860. doi: 10.1029/2003GL016985 CrossRefGoogle Scholar
  23. Ware R, Exner M, Feng D, Gorbunov M, Hardy K, Herman B, Kuo Y, Meehan T, Melbourne W, Rocken C, Schreiner W, Sokolovskiy S, Solheim F, Zou X, Anthes R, Businger S, Trenberth K (1996) GPS sounding of the atmosphere from low Earth orbit: preliminary results. Bull Am Meteorol Soc 77:19–40CrossRefGoogle Scholar
  24. Xu XH, Luo J, Shi C (2009) Comparison of COSMIC radio occultation refractivity profiles with radiosonde measurements. Adv Atmos Sci 26(6):1137–1145. doi: 10.1007/s00376-009-8066-y CrossRefGoogle Scholar
  25. Zhang K, Fu E, Silcock D, Wang Y, Kuleshov Y (2011) An investigation of atmospheric temperature profiles in the Australian Region using collocated GPS radio occultation and radiosonde data. Atmos Meas Tech 4:2087–2092CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • R. Norman
    • 1
    Email author
  • J. Le Marshall
    • 1
    • 2
  • K. Zhang
    • 1
  • C. S. Wang
    • 1
  • B. A. Carter
    • 1
  • W. Rohm
    • 1
  • T. Manning
    • 1
  • S. Gordon
    • 1
  • Y. Li
    • 1
  1. 1.Satellite Positioning for Atmosphere, Climate and Environment (SPACE) Research CentreRMIT UniversityMelbourneAustralia
  2. 2.Centre for Australian Weather and Climate Research (CAWCR)Bureau of MeteorologyMelbourneAustralia

Personalised recommendations