Skip to main content

Preliminary Results from the Superconducting Gravimeter SG-060 Installed in West Africa (Djougou, Benin)

  • Conference paper
  • First Online:
Earth on the Edge: Science for a Sustainable Planet

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 139))

Abstract

A GWR superconducting gravimeter of the new generation (OSG-60) has been installed in July 2010 in sub-humid West Africa, at the Djougou station in Benin. This station is located in the AMMA-CATCH long term hydrological observing system. We present the first results in terms of instrumental drift as well as the calibration results using FG5 absolute gravity measurements. We show that geophysical contributions due to hydrological load can bias the initial drift estimate. The noise level is compared to the Strasbourg SG as well as to the reference New Low Noise Model (NLNM) used in seismology. We also investigate the gravity response to atmospheric pressure changes and show that, because of the presence of large thermal tides, the gravity response to mass changes in the atmosphere is more complex than in the simple case of a constant barometric admittance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amalvict M, Hinderer J, Boy J-P, Gegout P (2001) A three year comparison between a superconducting gravimeter (GWR C026) and an absolute gravimeter (FG5#206) in Strasbourg (France). J Geod Soc Japan 47:334–340

    Google Scholar 

  • Banka D (1997) Noise levels of superconducting gravimeters at seismic frequencies. PhD Thesis, GDMB-Informationgesellschaft mbH, Clausthal, Germany

    Google Scholar 

  • Banka D, Crossley D (1999) Noise levels of superconducting gravimeters at seismic frequencies. Geophys J Int 139:87–97

    Article  Google Scholar 

  • Boy J-P, Gegout P, Hinderer J (2002) Reduction of surface gravity data from global atmospheric pressure loading. Geophys J Int 149:534–545

    Article  Google Scholar 

  • Boy J-P, Hinderer J (2006) Study of the seasonal gravity signal in superconducting gravimeter data. J Geodyn 41:227–233

    Article  Google Scholar 

  • Boy J-P, Lyard F (2008) High-frequency non-tidal ocean loading effects on surface gravity measurements. Geophys J Int 175:35–45

    Article  Google Scholar 

  • Crossley DJ, Jensen OG, Hinderer J (1995) Effective barometric admittance and gravity residuals. Phys Earth Planet Int 90:221–241

    Article  Google Scholar 

  • Crossley D, Hinderer J, Rosat S (2002) Using the atmosphere-gravity correlation to derive a time-dependent admittance. Bull Inform Mar Terr 136:10809–10820

    Google Scholar 

  • Crossley D, Hinderer J (2009) A review of the GGP network and future challenges. J Geodyn 48(3–5):299–304

    Article  Google Scholar 

  • Francis O, van Dam T (2002) Evaluation of the precision of using absolute gravimeters to calibrate superconducting gravimeters. Metrologia 39:485–488

    Article  Google Scholar 

  • Fukuda Y, Iwano S, Ikeda H, Hiraoka Y, Doi K (2005) Calibration of the superconducting gravimeter CT#043 with an absolute gravimeter FG5#210 at Syowa Station. Antarctica Polar Geosci 18:41–48

    Google Scholar 

  • Hinderer J, Florsch N, Mäkinen J, Legros H, Faller JE (1991) On the calibration of a superconducting gravimeter using absolute gravity measurements. Geophys J Int 106:491–497

    Article  Google Scholar 

  • Hinderer J, Rosat S, Crossley D, Amalvict M, Boy JP, Gégout P (2002) Influence of different processing methods on the retrieval of gravity signals from GGP data. Bull Inform Mar Terr 135:10653–10668

    Google Scholar 

  • Hinderer J, de Linage C, Boy J-P, Gegout P, Masson F, Rogister Y, Amalvict M, Pfeffer J, Littel F, Luck B, Bayer R, Champollion C, Collard P, Le Moigne N, Diament M, Deroussi S, de Viron O, Biancale R, Lemoine J-M, Bonvalot S, Gabalda G, Bock O, Genthon P, Boucher M, Favreau G, Séguis L, Delclaux F, Cappelaere B, Oi M, Descloitres M, Galle S, Laurent J-P, Legchenko A, Bouin M-N (2009) The GHYRAF (Gravity and Hydrology in Africa) experiment: description and first results. J Geodyn 48:172–181

    Article  Google Scholar 

  • Hinderer J, Pfeffer J, Boucher M, Nahmani S, De Linage C, Boy J-P, Genthon P, Seguis L, Favreau G, Bock O et al (2012) Land water storage changes from ground and space geodesy: first results from the GHYRAF (Gravity and Hydrology in Africa) experiment. Pure Appl Geophys 169(8):1391–1410. doi:10.1007/s00024-011-0417-9

    Article  Google Scholar 

  • Hinderer J, Crossley D, Warburton R (2007) Superconducting gravimetry, in treatise on geophysics. In: Herring T, Schubert G (eds) Geodesy, vol 3. Elsevier, Elsevier Science Technology, United Kingdom, pp 65–122

    Google Scholar 

  • Imanishi Y, Higashi T, Fukuda Y (2002) Calibration of the superconducting gravimeter T011 by parallel observation with the absolute gravimeterFG5#210—a Bayesian approach. Geophys J Int 151:867–878

    Article  Google Scholar 

  • Merriam JB (1992) Atmospheric pressure and gravity. Geophys J Int 109:488–500

    Article  Google Scholar 

  • Peterson J (1993) Observations and modelling of seismic background noise. US Geol Surv Open-File Rept 93-332, Albuquerque, New Mexico

    Google Scholar 

  • Pfeffer J, Boucher M, Hinderer J, Favreau G, Boy J-P, de Linage C, Luck B, Oi M, Le Moigne N (2011) Hydrological contribution to time—variable gravity: influence of the West African monsoon in southwest Niger. Geophys J Int 184(2):661–672

    Article  Google Scholar 

  • Rabier F, Jarvinen H, Klinker E, Mahfouf JF, Simmons A (2000) The ECMWF operational implementation of four dimensional variational assimilation. Part. I: experimental results with simplified physics. Q J Roy Meteor Soc 126:1143–1170

    Article  Google Scholar 

  • Ray RD, Ponte RM (2003) Barometric tides from ECMWF operational analyses. Ann Geophys 21:1897–1910

    Article  Google Scholar 

  • Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng C-J, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system. Bull Am Met Soc 85:381–394

    Article  Google Scholar 

  • Rosat S, Hinderer J, Crossley D, Boy J-P (2004) Performance of superconducting gravimeters from long-period seismology to tides. J Geodyn 38(3–5):461–476

    Article  Google Scholar 

  • Rosat S, Boy J-P, Ferhat G, Hinderer J, Amalvict M, Gegout P, Luck B (2009) Analysis of a ten-year (1997–2007) record of time-varying gravity in Strasbourg using absolute and superconducting gravimeters: new results on the calibration and comparison with GPS height changes and hydrology. J Geodyn 48:360–365

    Article  Google Scholar 

  • Rosat S, Hinderer J (2011) Noise levels of superconducting gravimeters: updated comparison and time stability. Bull Seism Soc Am 101(3). doi:10.1785/0120100217

  • Tamura Y, Sato T, Fukuda Y, Higashi T (2001) Scale factor calibration of a superconducting gravimeter at Esashi station, Japan, using absolute gravity measurements. J Geodesy 71. doi:10.1007/s00190-004-0415-0

  • Warburton RJ, Goodkind JM (1977) The influence of barometric pressure fluctuations on gravity. Geophys J Roy Astron Soc 48:281–292

    Article  Google Scholar 

  • Wenzel H-G (1996) The nanogal software: earth tide data processing package ETERNA 3.30. Bull Inform Mar Terr 124:9425–9439

    Google Scholar 

  • Zuern W, Widmer R (1995) On noise reduction in vertical seismic records below 2 mHz using local barometric pressure. Geophys Res Lett 22:3527–3540

    Google Scholar 

Download references

Acknowledgments

The installation of the SG in Benin was funded by the French Agence Nationale de la Recherche (ANR) during the 4 year (2008–2011) GHYRAF project and by CNRS- INSU (Institut National des Sciences de l’Univers). We also acknowledge financial support from the Centre National d’Etudes Spatiales (CNES). The GLDAS data used in this study were acquired as part of the mission of NASA Earth Science Division and archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). We thank the Institut de Recherche pour le Développement (IRD) and the Direction Générale de l’Eau (Ministry of Mines, Energy and Water) in Benin for the strong logistic and manpower support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hinderer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hinderer, J. et al. (2014). Preliminary Results from the Superconducting Gravimeter SG-060 Installed in West Africa (Djougou, Benin). In: Rizos, C., Willis, P. (eds) Earth on the Edge: Science for a Sustainable Planet. International Association of Geodesy Symposia, vol 139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37222-3_55

Download citation

Publish with us

Policies and ethics