Advertisement

Accurate Determination of the Earth Tidal Parameters at the BIPM to Support the Watt Balance Project

  • O. FrancisEmail author
  • Ch. Rothleitner
  • Z. Jiang
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 139)

Abstract

To achieve the targeted accuracy in the Bureau International des Poids et Mesures (BIPM) watt balance (WB) project, the value of g (acceleration due to gravity) must be known to an accuracy of 10−9 (10 nm/s2) during the operation of balance. Gravity changes due to Earth Tides are the largest time variable signal affecting g at 10−7. In order to improve the tidal prediction at the BIPM site, the relative spring gravimeter gPhone#032 collected observations for 6 months on site B of the BIPM. An analysis of the tidal results is presented here. We compare them with recent Earth and oceanic loading tidal models. In addition, using the gravity data from the Superconducting Gravimeter in Walferdange we demonstrate that a precision of +/−20 nm/s2 can be achieved on the predicted value of g using a synthetic tide and including atmospheric pressure, polar motion and hydrological effects.

Keywords

Earth tides Gravity Spring gravimeter Superconducting gravimeter Watt balance 

References

  1. Agnew DC (2007) Earth tides. In: Herring TA, Schubert G (eds) Treatise on geophysics: geodesy. Elsevier, New York, pp 163–195CrossRefGoogle Scholar
  2. Dehant V, Defraigne P, Wahr JM (1999) Tides for a convective Earth. J Geophys Res 104(B1):1035–1058CrossRefGoogle Scholar
  3. Ducarme B (2009) Limitations of high precision tidal prediction. Bull d’Inform Marées Terrestres 145:11663–11677Google Scholar
  4. Ducarme B, Venedikov AP, Arnoso J, Viera R (2004) Determination of the long period tidal waves in the GGP superconducting gravity data. J Geodyn 38:307–324CrossRefGoogle Scholar
  5. Eanes RJ, Bettadpur S (1995) The CSR 3.0 global ocean tide model. Technical Memorandum CSR-TM-95-06. Center for Space Research, University of Texas, AustinGoogle Scholar
  6. Eichenberger AG, Genevès G, Gournay P (2009) Determination of the Planck constant by means of a watt balance. Eur Phys J Spec Top 172:363–83CrossRefGoogle Scholar
  7. Lampitelli C, Francis O (2009) Hydrological effects on gravity and correlations between gravitational variations and level of the Alzette River at the station of Walferdange, Luxembourg. J Geodyn. doi: 10.1016/j.jog.2009.08.003
  8. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56:394–415. doi: 10.1007/s10236-006-0086-x CrossRefGoogle Scholar
  9. Melchior P (1983) The tides of the planet earth. Pergamon, OxfordGoogle Scholar
  10. Neumeyer J, Hagedoorn J, Leitloff J, Schmidt T (2004) Gravity reduction with three-dimensional atmospheric pressure data for precise ground gravity measurements. J Geodyn 38:437–450CrossRefGoogle Scholar
  11. Petit G, Luzum B (2010) (eds) IERS Technical Note 36. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, 179 pp. ISBN 3-89888-989-6Google Scholar
  12. Robertsson L, Francis O, van Dam T, Faller J, Ruess D, Delinte J-M, Vitushkin L, Liard J, Gagnon C, Guo You Guang, Huang Da Lun, Fang Yong Yuan, Xu Jin Yi, Jeffries G, Hopewell H, Edge R, Robinson I, Kibble B, Makinen J, Hinderer J, Amalvict M, Luck B, Wilmes H, Rehren F, Schmidt K, Schnull M, Cerutti G, Germak A, Zabek Z, Pachuta A, Arnautov G, Kalish E, Stus Y, Stizza D, Frederich J, Chartier J.-M, Marson I (2001) Results from the fifth international comparison of absolute gravimeters, ICAG97. Metrologia 38:71–78Google Scholar
  13. Van Camp M, Vauterin P (2005) Tsoft: graphical and interactive software for the analysis of time series and Earth tides. Comput Geosci 31(5):631–640CrossRefGoogle Scholar
  14. Van Camp M, Vanclooster M, Crommen O, Petermans T, Verbeeck K, Meurers B, van Dam T, Dassargues A (2006) Hydrogeological investigations at the Membach station, Belgium, and application to correct long periodic gravity variations. J Geophys Res 111:B10403. doi: 10.1029/2006JB004405 CrossRefGoogle Scholar
  15. Wenzel H-G (1996) The nanogal software: Earth tide data processing package: ETERNA 3.3. Bull d’Inform Marées Terrestres 124:9425–9439Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Faculty of Science, Technology and CommunicationUniversity of Luxembourg (UL)Luxembourg CityLuxembourg
  2. 2.Bureau International des Poids et Mesures (BIPM)Sèvres CedexFrance

Personalised recommendations