Modelling and Observing the Mw 8.8 Chile 2010 and Mw 9.0 Japan 2011 Earthquakes Using GOCE

  • J. BoumanEmail author
  • M. Fuchs
  • T. Broerse
  • B. Vermeersen
  • P. Visser
  • E. Schrama
  • M. Schmidt
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 139)


Earthquakes change the gravity field of the area affected by the earthquake due to mass redistribution in the upper layers of the Earth. In addition, for sub-oceanic earthquakes deformation of the ocean floor causes relative sea-level changes and mass redistribution of water that has again a significant effect on the gravity field. Two such recent, large sub-oceanic earthquakes are the 27 February 2010 Chile Maule earthquake with a magnitude of Mw 8.8 and the 11 March 2011 Japan Tohoku earthquake with a magnitude of Mw 9.0. The goal of ESA’s satellite GOCE—launched in March 2009—is to map the Earth’s gravity field with unprecedented accuracy and resolution. To this end, GOCE carries a gravity gradiometer. Although the mean gravity field is to be mapped, the sheer size of both earthquakes and associated mass redistribution make them both potential candidates for detecting the co-seismic gravity changes in the GOCE gradiometer data. We assess the detectability of gravity field changes in the GOCE gravity gradients by modelling these earthquakes using a forward model. Furthermore, we analyse the GOCE data before and after the respective earthquakes and assess their quality. Based on these analyses we conclude that despite its small signal size at GOCE altitude the Japan earthquake may be visible in the gravity gradients when more post-earthquake data become available. Because of the short data period before the Chile earthquake this signal will probably not be visible.


GOCE Gravity gradients Chile Maule earthquake Japan Tohoku earthquake Time variable gravity 



This feasibility study is sponsored as part of ESA’s Support to Science Element (STSE). Taco Broerse acknowledges financial support from ISES. The remarks by the Editor, Pascal Willis, and three anonymous referees helped to improve the paper.


  1. Bouman J, Stummer C, Murböck M, Fuchs M, Rummel R, Pail R, Gruber T, Bosch W, Schmidt M (2010) GOCE gravity gradients: a new satellite observable. GEOTECHNOLOGIEN Status report.
  2. Bouman J, Rispens S, Gruber T, Koop R, Schrama E, Visser P, Tscherning C, Veicherts M (2009) Preprocessing of gravity gradients at the GOCE high-level processing facility. J Geod 83:659–678CrossRefGoogle Scholar
  3. Bouman J, Fiorot S, Fuchs M, Gruber T, Schrama E, Tscherning CC, Veicherts M, Visser P (2011) GOCE gravity gradients along the orbit. J Geod 85:791–805. doi: 10.1007/s00190-011-0464-0 CrossRefGoogle Scholar
  4. Broerse D, Vermeersen L, Riva R, van der Wal W (2011a) Ocean contribution to co-seismic crustal deformation and geoid anomalies: application to the 2004 December 26 Sumatra-Andaman earthquake. Earth Planet Sci Lett 305:341–349. doi: 10.1016/ j.epsl.2011.03.011 CrossRefGoogle Scholar
  5. Broerse D, Visser P, Bouman J, Fuchs M, Vermeersen B, Schmidt M (2011b) Modelling and observing the 8.8 Chile and 9.0 Japan earthquakes using GOCE. In: Proceedings of the 4th international GOCE user workshop. ESA Publication SP-696, ESA/ESTECGoogle Scholar
  6. Chen J, Wilson C, Tapley B, Grand S (2007) GRACE detects coseismic and postseismic deformation from the Sumatra-Andaman earthquake. Geophys Res Lett 34, L13302Google Scholar
  7. de Linage C, Rivera L, Hinderer J, Boy J, Rogister Y, Lambotte S, Biancale R (2009) Separation of coseismic and postseismic gravity changes for the 2004 Sumatra–Andaman earthquake from 4.6 yr of GRACE observations and modelling of the coseismic change by normal-modes summation. Geophys J Int 176(3):695–714CrossRefGoogle Scholar
  8. Delouis B, Nocquet J, Vallée M (2010) Slip distribution of the February 27, 2010 Mw = 8.8 Maule Earthquake, central Chile, from static and high-rate GPS, InSAR, and broadband teleseismic data. Geophys Res Lett 37(17), L17305CrossRefGoogle Scholar
  9. Dziewonski A, Anderson D (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25(4):297–356CrossRefGoogle Scholar
  10. Einarsson I, Hoechner A, Wang R, Kusche J (2010) Gravity changes due to the Sumatra–Andaman and Nias earthquakes as detected by the GRACE satellites: a reexamination. Geophys J Int 183(2):733–747CrossRefGoogle Scholar
  11. Farrell W, Clark J (1976) On postglacial sea level. Geophys J Int 46:647–667CrossRefGoogle Scholar
  12. Goiginger H, Hoeck E, Rieser D, Mayer-Guerr T, Maier A, Krauss S, Pail R, Fecher T, Gruber T, Brockmann J, Krasbutter I, Schuh W, Jaeggi A, Prange L, Hausleitner W, Baur O, Kusche J (2011) The combined satellite-only global gravity field model GOCO02S. Presented at the 2011 General Assembly of the European Geosciences Union, Vienna, 4–8 AprilGoogle Scholar
  13. Han S, Shum C, Bevis M, Ji C, Kuo C (2006) Crustal dilatation observed by GRACE after the 2004 Sumatra-Andaman earthquake. Science 313(5787):658–662CrossRefGoogle Scholar
  14. Han S, Sauber J, Luthcke S, Ji C, Pollitz F (2008) Implications of postseismic gravity change following the great 2004 Sumatra-Andaman earthquake from the regional harmonic analysis of GRACE intersatellite tracking data. J Geophys Res 113, B11413. doi: 10.1029/2008JB005705 CrossRefGoogle Scholar
  15. Han S, Sauber J, Riva R (2011) Contribution of satellite gravimetry to understanding seismic source processes of the 2011 Tohoku-Oki earthquake. Geophys Res Lett 38:L24312. doi: 10.1029/2011GL049975 Google Scholar
  16. Heki K, Matsuo K (2010) Coseismic gravity changes of the 2010 earthquake in central Chile from satellite gravimetry. Geophys Res Lett 37:L24306. doi: 10.1029/2010GL045335 CrossRefGoogle Scholar
  17. Hoechner A, Sobolev S, Einarsson I, Wang R (2011) Investigation on afterslip and steady state and transient rheology based on postseismic deformation and geoid change caused by the Sumatra 2004 earthquake. Geochem Geophys Geosyst 12:Q07010. doi: 10.1029/2010GC003450 CrossRefGoogle Scholar
  18. Matsuo K, Heki K (2011) Coseismic gravity changes of the 2011 Tohoku‐Oki earthquake from satellite gravimetry. Geophys Res Lett 38:L00G12. doi: 10.1029/2011GL049018 CrossRefGoogle Scholar
  19. Panet I, Mikhailov V, Diament M, Pollitz F, King G, de Viron O, Holschneider M, Biancale R, Lemoine J (2007) Coseismic and post-seismic signatures of the Sumatra 2004 December and 2005 March earthquakes in GRACE satellite gravity. Geophys J Int 171(1):177–190CrossRefGoogle Scholar
  20. Panet I, Pollitz F, Mikhailov V, Diament M, Banerjee P, Grijalva K (2010) Upper mantle rheology from GRACE and GPS postseismic deformation after the 2004 Sumatra-Andaman earthquake. Geochem Geophys Geosyst 11:Q06008. doi: 10.1029/2009GC002905 CrossRefGoogle Scholar
  21. Sabadini R, Vermeersen B (2004) Global dynamics of the Earth: applications of normal mode relaxation theory to solid-earth geophysics. Kluwer, DordrechtCrossRefGoogle Scholar
  22. Shao G, Li X, Ji C, Maeda T (2011) Focal mechanism and slip history of the 2011 Mw 9.1 off the Pacific coast of Tohoku Earthquake, constrained with teleseismic body and surface waves. Earth Planets Space 63(7):559–564CrossRefGoogle Scholar
  23. Stummer C, Fecher T, Pail R (2011) Alternative method for angular rate determination within the GOCE gradiometer processing. J Geodesy 85(9):585–596. doi: 10.1007/s00190-011-0461-3 CrossRefGoogle Scholar
  24. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: Mission overview and early results. Geophys Res Lett 31:L09607. doi: 10.1029/2004GL019920

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • J. Bouman
    • 1
    Email author
  • M. Fuchs
    • 1
  • T. Broerse
    • 2
  • B. Vermeersen
    • 2
  • P. Visser
    • 2
  • E. Schrama
    • 2
  • M. Schmidt
    • 1
  1. 1.Deutsches Geodätisches Forschungsinstitut (DGFI)MunichGermany
  2. 2.Faculty of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations