Advertisement

Satellite Gravity Models and Their Use for Estimating Mean Ocean Circulation

  • Roland PailEmail author
  • Alberta Albertella
  • Daniel Rieser
  • Jan Martin Brockmann
  • Wolf-Dieter Schuh
  • Roman Savcenko
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 139)

Abstract

One of the main fields of application of static gravity field models is the determination of the (geodetic) mean dynamic ocean topography (MDT) as the difference of a mean sea surface derived from multi-year satellite altimetry, and a high-resolution static geoid model. In this study the performance of several satellite-only global gravity models is evaluated based on the MDT and derived geostrophic ocean surface currents. These are the GRACE-only model ITG-Grace2010S, the GOCE-only model GOCE_TIM_R2, and the combined gravity model GOCO02S representing a consistent combination of GRACE and GOCE. The geodetic MDT results are validated against independently measured drifter data. Compared to GRACE, the new high-resolution GOCE models improve the estimates of the mean dynamic ocean topography, filtered to degree/order 180, by reducing the differences to the drifter data by 10–12 cm/s. Therefore, they contribute significantly to an improved knowledge of mean ocean circulation.

Keywords

Global gravity model GOCE Mean dynamic topography Ocean currents Spherical harmonics 

Notes

Acknowledgements

The authors acknowledge the European Space Agency for the provision of the GOCE data. Parts of the work described in this manuscript are financed through ESA project GOCE HPF (contract no. 18308/04/NL/MM). Parts of this work were financially supported by the DGF Priority Programm SPP-1257, project GEOTOP-3. The authors also thank the three anonymous reviewers for their valuable comments and suggestions.

References

  1. Albertella A, Savcenko R, Janjic T, Rummel R, Bosch W, Schröter J (2012) High resolution dynamic ocean topography in the Southern Ocean from GOCE. Geophys J Int 190(2):922–930. doi: 10.1111/j.1365-246X.2012.05531.x Google Scholar
  2. Bingham RJ, Knudsen P, Andersen O, Pail R (2011) An initial estimate of the North Atlantic steady-state geostrophic circulation from GOCE. Geophys Res Lett 38:L01601. doi: 10.1029/2010GL045633 CrossRefGoogle Scholar
  3. Bruinsma SL, Marty JC, Balmino G, Biancale R, Förste C, Abrikosov O, Neumayer H (2010) GOCE gravity field recovery by means of the direct numerical method. In: Lacoste-Francis H (ed) Proceedings of the ESA living planet symposium. ESA publication SP-686, ESA/ESTEC. ISBN (online) 978-92-9221-250-6, ISSN 1609-042XGoogle Scholar
  4. Cheng Y, Andersen OB (2010) Improvement in global ocean tide model in shallow water regions. Poster presented at OSTST, Lisbon, 18–22 October 2010, SV.1-68 45Google Scholar
  5. Hernandez F, Schaeffer P (2001) The CLS01 mean sea surface: a validation with the GSFC00.1 surface. Technical report, CLS, Ramonville, St Agne, 14 ppGoogle Scholar
  6. Jekeli C (1981) Alternative methods to smooth the earth’s gravity field. Report 327, Department of Science and Survey, Ohio State University, ColumbusGoogle Scholar
  7. Knudsen P, Bingham R, Andersen O, Rio M-H (2011) A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model. J Geod 85(11):861–879. doi: 10.1007/s00190-011-0485-8 CrossRefGoogle Scholar
  8. Koch K-R, Kusche J (2002) Regularization of geopotential determination from satellite data by variance components. J Geod 76:259–268. doi: 10.1007/s00190-002-0245-x CrossRefGoogle Scholar
  9. Krasbutter I, Brockmann JM, Kargoll B, Schuh W-D, Goiginger H, Pail R (2011) Refinement of the stochastic model of GOCE scientific data in along time series. In: Ouwehand L (ed) Proceedings of the 4th international GOCE user workshop, Munich, ESA Publication SP-696, ESA/ESTEC. ISBN (online) 978-92-9092-260-5, ISSN 1609-042XGoogle Scholar
  10. Lumpkin R, Pazos M (2006) Measuring surface currents with Surface Velocity Program drifters: the instrument, its data, and some recent results. In: Griffa et al (eds) Lagrangian analysis and prediction of coastal and ocean dynamics (LAPCOD). Cambridge University Press, Cambridge (Chapter 2)Google Scholar
  11. Mayer-Gürr T, Eicker A, Kurtenbach E, Ilk K-H (2010) ITG-GRACE: global static and temporal gravity field models from GRACE data. In: Flechtner et al (eds) System Earth via geodetic-geophysical space techniques. Springer, Heidelberg, pp 159–168. doi: 10.1007/978-3-642-10228-8_13
  12. Migliaccio F, Reguzzoni M, Sansò F, Tscherning CC, Veicherts M (2010) GOCE data analysis: the space-wise approach and the first space-wise gravity field model. In: Lacoste-Francis H (ed) Proceedings of the ESA living planet symposium, ESA Publication SP-686, ESA/ESTEC. ISBN (online) 978-92-9221-250-6, ISSN 1609-042XGoogle Scholar
  13. Pail R, Goiginger H, Mayrhofer R, Schuh WD, Brockmann JM, Krasbutter I, Höck E, Fecher T (2010a) Global gravity field model derived from orbit and gradiometry data applying the time-wise method. In: Lacoste-Francis H (ed) Proceedings of the ESA living planet symposium, ESA Publication SP-686, ESA/ESTEC. ISBN (online) 978-92-9221-250-6, ISSN 1609-042XGoogle Scholar
  14. Pail R, Goiginger H, Schuh W-D, Höck E, Brockmann JM, Fecher T, Gruber T, Mayer-Gürr T, Kusche J, Jäggi A, Rieser D (2010b) Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys Res Lett 37:EID L20314. American Geophysical Union. doi: 10.1029/2010GL044906
  15. Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh W-D, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansó F, Tscherning CC (2011a) First GOCE gravity field models derived by three different approaches. J Geod 85(11):819–843. doi: 10.1007/s00190-011-0467-x CrossRefGoogle Scholar
  16. Pail R, Goiginger H, Schuh W-D, Höck E, Brockmann JM, Fecher T, Mayrhofer R, Krasbutter I, Mayer-Gürr T (2011b) GOCE-only gravity field model derived from 8 months of GOCE data,. In: Ouwehand L (ed) Proceedings of the 4th international GOCE user workshop, ESA publication SP-696, ESA/ESTEC. ISBN (online) 978-92-9092-260-5, ISSN 1609-042XGoogle Scholar
  17. Rio MH, Schaeffer P, Hernandez F, Lemoine JM (2006) From the altimetric sea level measurement to the ocean absolute dynamic topography: Mean sea surface, geoid, mean dynamic topography, a three-component challenge. In: Proceedings “15 years of progress in radar altimetry” symposium, Venice, 13–18 March 2006, ESA Special Publication SP-614, ESA/ESTECGoogle Scholar
  18. Rummel R, Gruber T, Koop R (2004) High level processing facility for GOCE: products and processing strategy. In: Lacoste H (ed) Proceedings of the 2nd international GOCE user workshop “GOCE, The Geoid and Oceanography”, ESA SP-569, ESA. ISBN (print) 92-9092-880-8, ISSN 1609-042XGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Roland Pail
    • 1
    Email author
  • Alberta Albertella
    • 1
  • Daniel Rieser
    • 2
  • Jan Martin Brockmann
    • 3
  • Wolf-Dieter Schuh
    • 3
  • Roman Savcenko
    • 4
  1. 1.Institute of Astronomical and Physical GeodesyTU MünchenMunichGermany
  2. 2.Institute of Theoretical and Satellite GeodesyGraz University of TechnologyGrazAustria
  3. 3.Institute of Geodesy and GeoinformationUniversity of BonnBonnGermany
  4. 4.Deutsches Geodätisches ForschungsinstitutMünchenGermany

Personalised recommendations