Atmospheric Effects on VLBI-Derived Terrestrial and Celestial Reference Frames

  • Hana Krásná(née Spicakova)Email author
  • Johannes Böhm
  • Lucia Plank
  • Tobias Nilsson
  • Harald Schuh
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 139)


We introduce our new terrestrial and celestial reference frames VieTRF10a and VieCRF10a, which have been estimated by the Vienna VLBI Software VieVS using VLBI observations since 1984. Details are provided about the computation, and comparisons are made with VTRF2008 and ICRF2, respectively, in terms of transformation parameters. Furthermore, we reaffirm the essentiality of a proper handling of horizontal tropospheric gradients and point out the systematic effect on the coordinates which arises through the use of constraints. We also assess the impact of two different mapping functions (GMF vs. VMF1) on terrestrial (TRF) and celestial reference frames, showing the scale difference between the TRF of 0.08 ppb which corresponds to 0.5 mm in height change.


VLBI Reference frames Tropospheric delay modelling 



The authors acknowledge the International VLBI Service for Geodesy and Astrometry (IVS) (Schlüter and Behrend 2007) and all its components for providing VLBI data. The maps were drawn with the Generic Mapping Tool (Wessel and Smith 1998). Hana Krásná works within FWF-Project P23143 (Integrated VLBI) and Tobias Nilsson within DFG-Project SCHU 1103/3-2 (Earth Rotation and Global Dynamic Processes, Forschergruppe FOR584). The authors would like to thank the reviewers for their constructive comments.


  1. Böckmann S, Artz T, Nothnagel A (2010) VLBI terrestrial reference frame contributions to ITRF2008. J Geodes 84:201–219. doi:10.1007/s00190-009-0357-7CrossRefGoogle Scholar
  2. Böhm J, Werl B, Schuh H (2006a) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111:B02406. doi:10.1029/2005JB003629Google Scholar
  3. Böhm J, Niell A, Tregoning P, Schuh H (2006b) Global mapping function (GMF): a new empirical mapping function based on data from numerical weather model data. Geophys Res Lett 33:L07304 doi:10.1029/2005GL025546Google Scholar
  4. Böhm J, Böhm S, Nilsson T, Pany A, Plank L, Spicakova H, Teke K, Schuh H (2012) The new Vienna VLBI Software VieVS. In: Kenyon S, Pacino MC, Marti U (eds) IAG symposium 2009, vol 136, pp 1007–1012. ISBN 978-3-642-20337-4Google Scholar
  5. Capitaine N, Wallace PT, Chapront J (2003) Expressions for IAU 2000 precession quantities. Astron Astrophys 412(2):567–586. doi:10.1051/0004-6361:20031539CrossRefGoogle Scholar
  6. Chen G, Herring TA (1997) Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J Geophys Res 102:20489–20502CrossRefGoogle Scholar
  7. Fey A, Gordon D, Jacobs ChS (2009) The second realization of the international celestial reference frame by very long baseline interferometry, Presented on behalf of the IERS/IVS Working Group. IERS Technical Note, No. 35. Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main, Germany, 204 pp. ISBN 3-89888-918-6Google Scholar
  8. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dynam 56:394–415. doi:10.1007/s10236-006-0086-xCrossRefGoogle Scholar
  9. MacMillan DS, Ma C (1997) Atmospheric gradients and VLBI terrestrial and celestial reference frames. Geophys Res Lett 24(4):453–456. doi:10.1029/97GL00143CrossRefGoogle Scholar
  10. Mathews PM, Herring TA, Buffet BA (2002) Modeling of nutation and precession: new nutation series for nonrigid Earth, and insights into the Earth’s Interior. J Geophys Res 107(B4):2068, 26 pp. doi:10.1029/2001JB000390Google Scholar
  11. Petit G, Luzum B (2010) IERS Conventions (2010). International Earth rotation and reference systems service (IERS). IERS Technical Note, No. 36. Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main, Germany. ISBN 1019-4568Google Scholar
  12. Petrov L, Boy J-P (2004) Study of the atmospheric pressure loading signal in very long baseline interferometry observations. J Geophys Res 109:B03405. doi:10.1029/2003JB002500Google Scholar
  13. Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. In: Henriksen SW, Mancini A, Chovitz BH (eds) The use of artificial satellites for geodesy. Geophysical monograph series, vol 15. American Geophysical Union, Washington, pp 247–251CrossRefGoogle Scholar
  14. Schlüter W, Behrend D (2007) The international VLBI service for geodesy and astrometry (IVS): current capabilities and future prospects. J Geodes 81(6–8):379–387. doi:10.1007/ s00190-006-0131-zCrossRefGoogle Scholar
  15. Schubert SD, Rood RB, Pfaendtner J (1994) An assimilated data set for earth science applications. Bull Am Meteorol Soc 74:2331–2342CrossRefGoogle Scholar
  16. Steigenberger P, Böhm J, Tesmer V (2009) Comparison of GMF/GPT with VMF1/ECMWF and implications for atmospheric loading. J Geodes 83:943–951. doi:10.1007/s00190-009-0311-8CrossRefGoogle Scholar
  17. Tesmer V, Böhm J, Heinkelmann R, Schuh H (2007) Effect of different tropospheric mapping functions on the TRF, CRF and position time-series estimated from VLBI. J Geodes 81(6–8):409–421. doi:10.1007/s00190-006-0126-9CrossRefGoogle Scholar
  18. Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. EOS Trans Am Geophys Unoin 79(47):579CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hana Krásná(née Spicakova)
    • 1
    Email author
  • Johannes Böhm
    • 1
  • Lucia Plank
    • 1
  • Tobias Nilsson
    • 2
  • Harald Schuh
    • 2
  1. 1.Institute of Geodesy and GeophysicsVienna University of TechnologyWienAustria
  2. 2.Department Geodesy and Remote SensingHelmholtz-Zentrum Potsdam, DeutschesGeoForschungsZentrum GFZPotsdamGermany

Personalised recommendations