Plate Boundary Deformation Following the December 26, 2004 Andaman–Sumatra Earthquake Revealed by GPS Observations and Seismic Moment Tensors

  • Sanjay K. PrajapatiEmail author
  • P. S. Sunil
  • C. D. Reddy
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 139)


To investigate the transient strain rate of postseismic deformation associated with the highly devastating December 26, 2004 Andaman–Sumatra earthquake (Mw 9.3), a combined analysis have been done using GPS data and Seismic Moment Tensors (SMT) acquired from Andaman–Nicobar–Sumatra regions during 2005–2007. The displacement estimated during postseismic periods 2005–2006 and 2006–2007 with respect to ITRF2008 and Indian Reference Frame, display dominating arc-normal active deformation in the southern part close to epicenter, and arc-parallel deformation towards the northern part of the Andaman–Nicobar–Sumatra Subduction Zone (ANSSZ). The principal strain rates during 2005–2006 periods indicate larger strain accumulation and decreased rate of strain during 2006–2007 with a maximum arc-normal compression on southern part of ANSSZ and a changing trend of arc-parallel extension towards the central and northern part along the ANSSZ. Stress inversion using SMT also indicate compressive horizontal stress in the southern part and extensional stress towards the central and northern part of the study area, and a remarkable agreement with GPS derived strain rate pattern.


GPS Postseismic deformation Seismic moment Strain rate Stress inversion 



We are grateful to Teruyuki Kato and many colleagues, who have participated in collecting GPS data. The maps were generated by Generic Mapping Tools (GMT) software package. The author also grateful thanks to Head, seismology division, Ministry of Earth Sciences, New Delhi for permission to publish the work. We gratefully acknowledge Dr. Sumer Chopra for critically reviewing and giving constructive comments.


  1. Ammon CJ, Ji C, Thio H, Robinson D et al (2005) Rupture process of the 2004 Sumatra–Andaman earthquake. Science 308:1133–1139CrossRefGoogle Scholar
  2. Banerjee P, Pollitz FF, Bürgmann R (2005) The size and duration of the Sumatra–Andaman earthquake from far-field static offsets. Science 308:1769–1772CrossRefGoogle Scholar
  3. Burgmann R, Dresen G (2008) Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy, and field observations. Annu Rev Earth Planet Sci 36:531–567CrossRefGoogle Scholar
  4. Chlieh M, Avouac J-P, Hjorleifsdottir V et al (2007) Coseismic slip and afterslip of the great Mw 915 Sumatra–Andaman earthquake of 2004. Bull Seism Soc Am 97(1A):S152–S173CrossRefGoogle Scholar
  5. Curray JR, Moore DG, Lawver LA et al (1979) Tectonics of the Andaman sea and Burma. Am Assoc Pet Geol Memoir 29:189–198Google Scholar
  6. Curray JR, Emmel FJ, Moore DG, Raitt RW (1982) Structure, tectonics and geological history of the NE Indian ocean. In: Nairn AEM, Sehli FG (eds) The Ocean Basins and Margins. The Indian Ocean, vol 6, pp 399–450Google Scholar
  7. Feigl KL, King RW, Jordan TH (1990) Geodetic measurement of tectonic deformation in the Santa Maria Fold and Thrust Belt, California. J Geophys Res 90:2679–2699CrossRefGoogle Scholar
  8. Feigl KL et al (1993) Space geodetic measurement of crustal deformation in central and southern California 1984–1992. J Geophys Res 98:21677–21712CrossRefGoogle Scholar
  9. Genrich JF, Bock Y, MvCaffrey R, Parawirodirdjo L, Stevens C, Puntodewo SO, Subarya C, Wdowinsky S (2000) Distribution of slip at the northern Sumatran fault system. J Geophys Res 105:722–743Google Scholar
  10. Hardebeck JL, Michael AJ (2004) Stress orientations at intermediate angles to the San Andreas Fault, California. J Geophys Res 109:B11303. doi: 10.1029/2004JB003239 Google Scholar
  11. Hardebeck JL, Michael AJ (2006) Damped regional-scale stress inversions: methodology and examples from southern California aftershock sequence. J Geophys Res 111:B11310. doi: 10.1029/2005JB004144 CrossRefGoogle Scholar
  12. Hearn EH, Bürgmann R, Reilinger R (2002) Dynamics of Izmit earthquake postseismic deformation and loading of the Düzce earthquake hypocenter. Bull Seism Soc Am 92:172–193CrossRefGoogle Scholar
  13. Herring TA, King RW, McClusky SC (2006a) GAMIT reference manual, GPS analysis at MIT. Version 103. Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of TechnologyGoogle Scholar
  14. Herring TA, King RW, McClusky SC (2006b) GLOBK reference manual, Global Kalman filter VLBI and GPS analysis program. Release 103 Department of earth atmospheric and planetary science Massachusetts Institute of TechnologyGoogle Scholar
  15. Hsu Y-J, Yu S-B, Simons M, Kuo L-C, Chen H-Y (2009) Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and focal mechanisms. Tectonophysics 479:4–18CrossRefGoogle Scholar
  16. Kreemer C, Blewitt G, Hammond WC, Plag H (2006) Global deformation from the great 2004 Sumatra–Andaman earthquake observed by GPS: implications for rupture process and global reference frame. Earth Planet Space 58:141–148CrossRefGoogle Scholar
  17. Marone CJ, Scholz CH, Bilham R (1991) On the mechanics of earthquake afterslip. J Geophys Res 96:8441–8452CrossRefGoogle Scholar
  18. McCaffrey R, Zwick P, Bock Y, Parwieodirdjo L, Genrich J, Stevens C, Puntodewo S, Subarya S (2000) Strain partitioning during oblique plate convergence in northern Sumatra: geodetic observations and numerical modeling. J Geophys Res 105:28363–28375CrossRefGoogle Scholar
  19. McClusky S, Balassanian S, Barka A et al (2000) Global positioning system constrains on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J Geophys Res 105(B3):5695–5719CrossRefGoogle Scholar
  20. Michael AJ (1984) Determination of stress from slip data: faults and fold. J Geophys Res 89:11517–11526CrossRefGoogle Scholar
  21. Michael AJ (1987) Use of focal mechanisms to determine stress: a control study. J Geophys Res 92:357–368CrossRefGoogle Scholar
  22. Nanayama F, Satake K, Furukawa R et al (2003) Unusually large earthquakes inferred from tsunami deposits along the Kuril trench. Nature 424:660–663CrossRefGoogle Scholar
  23. Park J, Song TA, Tromp J et al (2005) Earth’s free oscillations excited by the 26 December 2004 Sumatra–Andaman earthquake. Science 308:1139–1144CrossRefGoogle Scholar
  24. Paul J, Lowry AR, Bilham R, Sen S, Smalley R Jr (2007) Postseismic deformation of the Andaman following the 26 December, 2004 Great Sumatra–Andaman earthquake. Geophys Res Lett 34:L19309. doi: 10.1029/2007GL031024 CrossRefGoogle Scholar
  25. Pollitz FF (1997) Gravitational viscoelastic postseismic relaxation on a layered spherical earth. J Geophys Res 102:17921–17941CrossRefGoogle Scholar
  26. Pollitz FF (2003) Postseismic relaxation theory on a laterally heterogeneous viscoelastic model. Geophys J Int 155:57–78CrossRefGoogle Scholar
  27. Reddy CD, Prajapati SK, Kato T (2009) A Rheological model for post-seismic response due to 2004-Sumatra–Andaman earthquake: contribution from low viscosity lithosphere. J Earthquake Tsunami 3(1):25–34CrossRefGoogle Scholar
  28. Reddy CD, Sunil PS (2008) Post-seismic crustal deformation and strain rate in Bhuj region, western India, after the 2001 January 26 earthquake. Geophys J Int 172:593–606CrossRefGoogle Scholar
  29. Savage JC (1990) Equivalent strike-slip earthquake cycles in half-space and lithosphere–asthenosphere earth models. J Geophys Res 95:4873–4879CrossRefGoogle Scholar
  30. Savage JC, Prescott WH (1978) Asthenosphere readjustment and the earthquake cycle. J Geophys Res 83:13369–13376Google Scholar
  31. Socquet A, Vigny C, Rooke NC et al (2006) India and Sunda plates motion and deformation along their boundary in Myanmar determined by GPS. J Geophys Res 111:B05406. doi: 10.1029/ 2005JB003877 Google Scholar
  32. Vigny C, Simons WJF, Abu S et al (2005) Insight into the 2004 Sumatra–Andaman earthquake from GPS measurements in Southeast Asia. Nature 436:201–206CrossRefGoogle Scholar
  33. Hu Y, Wank K, He J, Klotz J et al (2004) Three-dimensional viscoelastic finite element model for postseismic deformation of the great 1960 Chile earthquake. J Geophys Res 109:B12403. doi: 10.1029/2004JB003163 CrossRefGoogle Scholar
  34. Wang K, Hu Y, Bevis M et al (2007) Crustal motion in the zone of the 1960 Chile earthquake: detangling earthquake-cycle deformation and forearc-sliver translation. Geochem Geophys Geosyst 8(10):Q10010. doi: 10.1029/2007GC001721 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sanjay K. Prajapati
    • 1
    Email author
  • P. S. Sunil
    • 2
  • C. D. Reddy
    • 2
  1. 1.Center for Seismology, Ministry of Earth SciencesNew DelhiIndia
  2. 2.Indian Institute of GeomagnetismNavi MumbaiIndia

Personalised recommendations