DORIS Tropospheric Estimation at IGN: Current Strategies, GPS Intercomparisons and Perspectives

  • Pascal WillisEmail author
  • Olivier Bock
  • Yoaz E. Bar-Sever
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 139)


We reprocessed DORIS for all of 2010, using the latest model and strategy improvements to estimate Zenith Tropospheric Delays (ZTDs), as well as tropospheric horizontal gradients for about 60 ground stations. These results were compared to recent GPS-based estimates obtained at the Jet Propulsion Laboratory (JPL). After discussing some of the data processing options and current limitations of the DORIS data, we show that the DORIS-GPS comparisons possess a high degree of correlation (average being 0.97), and that total zenith delay estimates from the two techniques agree at the 3 mm level on average with 8.6 mm total RMS, with better results being obtained when a 5° elevation cutoff angle is used for DORIS. While these DORIS results cannot be used for real-time weather prediction, they could contribute to scientific investigations for climatology, thanks to the homogenous tracking network of the DORIS system, as well as the long-term history of the observation time series.


DORIS GPS Horizontal tropospheric gradients Zenith tropospheric delay 



Part of this work was supported by the Centre National d’Etudes Spatiales (CNES). Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Navigation, under a contract with the National Aeronautics and Space Administration. It is based on observations with DORIS embarked on SPOTs, TOPEX/Poseidon, Envisat, Jason-2 and Cryosat-2 satellites. This paper is IPGP contribution number 3286.


  1. Altamimi Z, Boucher C, Willis P (2005) Terrestrial reference frame requirements within IGGOS, in IGGOS science rationale. J Geodyn 40(4–5):363–374CrossRefGoogle Scholar
  2. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005, a new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters. J Geophys Res 112(B9) (art. B09401)Google Scholar
  3. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008, an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473CrossRefGoogle Scholar
  4. Argus DF, Gordon RG, Heflin MB, Ma C, Eanes R, Willis P, Peltier WR, Owen S (2010) The angular velocities of the plates and the velocity of Earth’s center from space geodesy. Geophys J Int 180(3):916–960CrossRefGoogle Scholar
  5. Auriol A, Tourain C (2010) DORIS system, the new age. Adv Space Res 46(12):1484–1496CrossRefGoogle Scholar
  6. Bar-Sever YE, Kroger PM, Borjesson JA (1998) Estimating horizontal gradients of tropospheric path delay with a single GPS receiver. J Geophys Res 103(B3):5019–5035CrossRefGoogle Scholar
  7. Bock O, Bouin MN, Walpersdorff A, Lafore JP, Janicot S, Guichard F, Agusti-Panadera A (2007) Comparison of ground-based GPS precipitable water vapour to independent observations and NWP model reanalyses over Africa. Quat J R Meteror Soc 133(629):2011–2027CrossRefGoogle Scholar
  8. Bock O, Willis P, Laccara M, Bosser P (2010) An inter-comparison of zenith tropospheric delays derived from DORIS and GPS data. Adv Space Res 46(12):1648–1660CrossRefGoogle Scholar
  9. Boehm J, Niell A, Tregoning P, Schuh H (2006) Global Mapping Function (GMF), a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33(7)Google Scholar
  10. Boehm J, Heinkelmann R, Schuh H (2007) A global model of pressure and temperature for geodetic applications. J Geod 81(10):679–683CrossRefGoogle Scholar
  11. Byun SH, Bar-Sever YE (2009) A new type of troposphere zenith path delay product of the International GNSS service. J Geod 83(3–4):367–373Google Scholar
  12. Cerri L, Berthias JP, Bertiger WI, Haines BJ, Lemoine FG, Mercier F, Ries JC, Willis P, Zelensky NP, Ziebart M (2010) Precision orbit determination standards for the Jason series of altimeter missions. Mar Geod 33(S1):379–418CrossRefGoogle Scholar
  13. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P et al (2011) The ERA-interim reanalysis, configuration and performance of the data assimilation system. Quat J R Meteor Soc 137(656):553–597CrossRefGoogle Scholar
  14. Eberhart-Phillips D, Hauessler PJ, Freymueller JT, Frankel AD, Rubin CM et al (2003) The 2002 Denali fault earthquake, Alaka, a large magnitude, slip-partitioned event. Science 300(5622):1113–1118CrossRefGoogle Scholar
  15. Fagard H (2006) Twenty years of evolution for the DORIS permanent network, From its initial deployment to its renovation. J Geod 80(8–11):429–456CrossRefGoogle Scholar
  16. Flouzat M, Bettinelli P, Willis P, Avouac JP, Heriter T, Gautam U (2009) Investigating tropospheric effects and seasonal position variations in GPS and DORIS time series from the Nepal Himalaya. Geophys J Int 178(3):1246–1259CrossRefGoogle Scholar
  17. Gobinddass ML, Willis P, de Viron O, Sibthorpe AJ, Zelensky NP, Ries JC, Ferland R, Bar-Sever YE, Diament M (2009a) Systematic biases in DORIS-derived geocenter time series related to solar radiation pressure mis-modelling. J Geod 83(9):849–858CrossRefGoogle Scholar
  18. Gobinddass ML, Willis P, de Viron O, Sibthorpe A, Zelensky NP, Ries JC, Ferland R, Bar-sever YE, Diament M, Lemoine FG (2009b) Improving DORIS geocenter time series using an empirical rescaling of solar radiation pressure. Adv Space Res 44(11):1279–1287CrossRefGoogle Scholar
  19. Gobinddass ML, Willis P, Diament M, Menvielle M (2010) Refining DORIS atmospheric drag estimation in preparation of ITRF2008. Adv Space Res 46(12):1566–1577CrossRefGoogle Scholar
  20. Lemoine JM, Capdeville H (2006) A corrective model for Jason-1 DORIS Doppler data in relation of the South Atlantic anomaly. J Geod 80(8–11):507–523CrossRefGoogle Scholar
  21. Lemoine FG, Zelensky NP, Chinn D, Pavlis D, Beckley B, Lutchke SB, Willis P, Ziebart M, Sibthorpe A, Boy JP, Luceri V (2010) Towards development of a consistent orbit determination, TOPEX/Poseidon, Jason-1 and Jason-2. Adv Space Res 46(12):1513–1540CrossRefGoogle Scholar
  22. Nocquet JM, Willis P, Garcia S (2006) Plate kinematics in Africa and surrounding plates from a combination of DORIS and GPS solutions. J Geod 80(8–11):591–607CrossRefGoogle Scholar
  23. Noll CE (2010) The crustal dynamics data information system, a resource to support scientific analysis using space geodesy. Adv Space Res 45(12):1421–1440CrossRefGoogle Scholar
  24. Perfettini H, Avouac JP, Ruegg JC (2005) Geodetic displacements and aftershocks following the 2001 Mw = 8.4 Peru earthquake, implications for the mechanics of the earthquake cycle along subduction zones. J Geophys Res 110(B9)Google Scholar
  25. Saastamoinen J (1973) Contribution to the theory of atmospheric réfraction. Bull Geod 107:1334CrossRefGoogle Scholar
  26. Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geophys Res 81:781–798Google Scholar
  27. Snadjrova K, Boehm J, Willis P, Haas R, Schuh H (2006) Multi-technique comparison of tropospheric zenith delays derived from CONT02 campaign. J Geod 79(10–11):613–623Google Scholar
  28. Stepanek P, Dousa J, Filler V, Hugentobler U (2010) DORIS data analysis at GOP using single-satellite and multi-satellite solutions. Adv Space Res 46(12):1578–1592CrossRefGoogle Scholar
  29. Tavernier G, Soudarin L, Larson K, Noll C, Ries J, Willis P (2002) Current status of the DORIS pilot experiment and the future international DORIS service. Adv Space Res 30(2):151–156CrossRefGoogle Scholar
  30. Teke K, Böhm J, Nilsson T, Schuh H, Steigenberger P, Dach R, Heinkelmann R, Willis P, Haase R, Garcia-Espada S, Hobiger T, Ichikawa R, Shimizu S (2011) Multi-technique comparison of troposphere zenith delays and gradients during CONT08. J Geod 85(7):395–413CrossRefGoogle Scholar
  31. Tregoning P, Herring TA (2006) Impact of a priori zenith hydrostatic delay errors on GPS estimates of station heights and zenith total delays. Geophys Res Lett 33(23), art. L23303Google Scholar
  32. Vigny C, Socquet A, Peyrat S, Ruegg JC, Metois M, Madariaga R, Morvan S, Lancieri M, Lacassin R, Campos J, Carrizo D, Bejar-Pizarro M, Barrientos S, Armijo R, Aranda C, Valderas-Bermejo MC, Otrega I, Bondoux F, Baize S, Lyon-Caen H, Pavez A, Vilotte JP, Bevis M, Brooks B, Smalley R, Parra H, Baez JC, Nlanco M, Cimbaro S, Kendrick E (2011) The 2010 Mw 8.8 Maule megathrust earthquake of central Chile, monitored by GPS. Science 332(6036):1417–1421CrossRefGoogle Scholar
  33. Williams SDP, Willis P (2006) DORIS network, error analysis of weekly station coordinates. J Geod 80(8–11):525–539CrossRefGoogle Scholar
  34. Willis P (2007) Analysis of a possible future degradation in the DORIS geodetic results related to changes in the satellite constellation. Adv Space Res 39(10):1582–1588CrossRefGoogle Scholar
  35. Willis P, Haines B, Berthias JP, Sengenes P, Le Mouel JL (2004) Behavior of the DORIS/Jason oscillator over the South Atlantic anomaly. C R Geosci 336(9):839–846CrossRefGoogle Scholar
  36. Willis P, Deleflie F, Barlier F, Bar-Sever YE, Romans L (2005a) Effects of thermosphere total density perturbations on LEO orbits during severe geomagnetic conditions (Oct - Nov 2003). Adv Space Res 36(3):522–533CrossRefGoogle Scholar
  37. Willis P, Desai SD, Bertiger WI, Haines BJ, Auriol A (2005b) DORIS satellite antenna maps derived from long-term residuals time series. Adv Space Res 36(3):486–497CrossRefGoogle Scholar
  38. Willis P, Jayles C, Bar-Sever YE (2006) DORIS, from altimeric missions orbit determination to geodesy. C R Geosci 338(14–15):968–979CrossRefGoogle Scholar
  39. Willis P, Soudarin L, Jayles C, Rolland L (2007a) DORIS applications for solid earth and atmospheric sciences. C R Geosci 339(16):949–959CrossRefGoogle Scholar
  40. Willis P, Haines BJ, Kuang D (2007b) DORIS satellite phase center determination and consequences on the derived scale of the terrestrial reference frame. Adv Space Res 39(10):1589–1596CrossRefGoogle Scholar
  41. Willis P, Ries JC, Zelensky NP, Soudarin L, Fagard H, Pavlis EC, Lemoine FG (2009) DPOD2005, realization of a DORIS terrestrial reference frame for precise orbit determination. Adv Space Res 44(5):535–544CrossRefGoogle Scholar
  42. Willis P, Fagard H, Ferrage P, Lemoine FG, Noll CE, Noomen R, Otten M, Ries JC, Soudarin L, Tavernier G, Valette JJ (2010a) The international DORIS service, toward maturity. Adv Space Res 45(12):1408–1420CrossRefGoogle Scholar
  43. Willis P, Boucher C, Fagard H, Garayt B, Gobinddass ML (2010b) Contributions of the French Institut Géographique National (IGN) to the international DORIS service. Adv Space Res 45(12):1470–1480CrossRefGoogle Scholar
  44. Willis P, Bar-Sever YE, Bock O (2012) Estimating horizontal tropospheric gradients in DORIS data processing, preliminary results. IAG Symp 136:1011–1017Google Scholar
  45. Zumberge JF, Heflin MB, Jefferson DC, Watkins MB, Web MH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Pascal Willis
    • 1
    • 2
    Email author
  • Olivier Bock
    • 3
  • Yoaz E. Bar-Sever
    • 4
  1. 1.Institut national de l’information Géographique et forestière (IGN), Direction TechniqueSaint-MandéFrance
  2. 2.Institut de Physique du Globe de Paris, PRES Sorbonne Paris CitéParisFrance
  3. 3.Institut national de l’information Géographique et forestière (IGN), LAREGMarne-la-ValléeFrance
  4. 4.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations