Pumping Induced Pore Pressure Changes in Tilt Measurements Near a Fault Zone in Mizunami, Japan

  • Matthias QueitschEmail author
  • Gerhard Jentzsch
  • Adelheid Weise
  • Hiroshi Ishii
  • Yashuiro Asai
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 139)


Tilt meters are a widely used tool for monitoring long-term and small-scale deformations. Therefore, they are perfectly suited to test potential subsurface waste repositories. Since November 2005 a high sensitive tilt meter of the ASKANIA-type is recording at a distance of 300 m from Mizunami Underground Research Laboratory, where two vertical shafts are under construction. During the construction of those shafts large pumps were used to reduce the groundwater level, leading to two large- and several small-scale pore pressure induced tilt signals. Due to the fault system nearby, the tilt direction does not coincide with the direction towards the pump as would be expected in homogeneous media. In this study we analyze the main surface tilt direction caused by pore pressure induced deformation. Our results show two main directions which are both nearly perpendicular to the fault. Also, the long-term signals show a high correlation with the short-term pore pressure induced tilt signals.


Tilt Hydrology Deformation Pore Pressure 



This research was only possible because of the good cooperation of the German and the Japanese sides: while the tilt meter was provided by the Geodynamic Observatory Moxa (Germany), the Japanese partners from TRIES were responsible for the borehole in the gallery as well as the maintenance of the instrument. From the Japanese side additional data were provided, including geologic and environmental information as well as data on the status of shaft construction. We also thank three anonymous reviewers for their helpful comments and suggestions.


  1. Baker TF (1980) Tidal tilt at Llanrwst, North Wales: tidal loading and Earth structure. Geophys J R Astron Soc 62(2):269–290. doi:10.1111/j.1365-246X.1980.tb04855.xCrossRefGoogle Scholar
  2. Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12:155–164CrossRefGoogle Scholar
  3. Braitenberg C (1999) The hydrological induced strain/tilt signal—a review. Bull d’Inf Marées Terrestres 131:10171–10181Google Scholar
  4. Castillo D, Hunter S, Harben P, Wright C, Conant R, Davis E (1997) Deep hydraulic fracture imaging: recent advances in tiltmeter technologies. Int J Rock Mech Min 34:47.e1–47.e9. doi:10.1016/S1365-1609(97)00225-6Google Scholar
  5. Dzurisin D, Westphal JA, Johnson DJ (1983) Eruption prediction aided by electronic tiltmeter data at Mount St. Helens. Science 221(4618):1381–1383. doi:10.1126/science.221.4618.1381CrossRefGoogle Scholar
  6. Evans K, Wyatt F (1984) Water table effects on the measurement of earth strain. Tectonophysics 108:323–337CrossRefGoogle Scholar
  7. Fujimori K, Ishii H, Mukai A, Nakao S, Matsumoto S, Hirata Y (2001) Strain and tilt changes measured during a water injection experiment at the Nojima Fault zone, Japan. Island Arc 10(3–4): 228–234. doi:10.1111/j.1440-1738.2001.00320.xCrossRefGoogle Scholar
  8. Gebauer A, Jahr T, Jentzsch G (2007) Recording and interpretation/analyses of tilt signals with five ASKANIA borehole tiltmeters at the KTB. Rev Sci Instrum 78(5):054501-1–6Google Scholar
  9. Ishii H, Jentzsch G, Graupner S, Nakao S, Ramatschi M, Weise A (2001) Observatory Nokogiriyama/Japan: comparison of different tiltmeters. J Geodes Soc Jpn 47(1):155–160Google Scholar
  10. Jacoby HD (1966) Das neue Bohrloch-Gezeitenpendel nach Graf. Tech. Rep. 67, ASKANIA-WarteGoogle Scholar
  11. Jahr T, Letz H, Jentzsch G (2006) Monitoring fluid induced deformation of the Earth’s crust: a large scale experiment at the KTB location/Germany. J Geodyn 41(1–3):190–197. doi:10.1016/ j.jog.2005.08.003CrossRefGoogle Scholar
  12. Jahr T, Jentzsch G, Gebauer A, Lau T (2008) Deformation, seismicity, and fluids: results of the 2004/2005 water injection experiment at the KTB/Germany. J Geophys Res 113:B11410. doi:10.1029/ 2008JB005610CrossRefGoogle Scholar
  13. Jahr T, Jentzsch G, Weise A (2009) Natural and man-made induced hydrological signals, detected by high resolution tilt observations at the Geodynamic Observatory Moxa/Germany. J Geodyn 48(3–5): 126–131. doi:10.1016/j.jog.2009.09.011CrossRefGoogle Scholar
  14. Japan Atomic Energy Agency (2002) Master plan of the Mizunami Underground Research Laboratory Project. Tech. rep., Tono Geoscience Center, Japan Cycle Development Institute.
  15. Jentzsch G, Koß S (1997) Interpretation of long-period tilt records at Blå Sjø, southern Norway, with respect to variations in the lake level. Phys Chem Earth 22:25–31. doi:10.1016/S0079-1946(97)00073-6CrossRefGoogle Scholar
  16. Kümpel HJ (1982) Tilt measurements. What do they tell us? Terra Cognita 2:391–399Google Scholar
  17. Kümpel HJ (1983) The effect of variations on the groundwater table on borehole tiltmeters. In: Kuo J (ed) Proceedings of the 9th international symposium on Earth tides, New York, pp 33–45Google Scholar
  18. Kümpel HJ, Grecksch G, Lehmann K, Rebscher D, Schulze KC (1999) Studies of in situ pore pressure fluctuations at various scales. Oil Gas Sci Technol 54(6):679–688CrossRefGoogle Scholar
  19. Longuevergne L, Florsch N, Boudin F, Oudin L, Camerlynck C (2009) Tilt and strain deformation induced by hydrologically active natural fractures: application to the tiltmeters installed in Sainte-Croix-aux-Mines observatory (France). Geophys J Int 178(2):667–677. doi:10.1111/j.1365-246X.2009.04197.xCrossRefGoogle Scholar
  20. Matsuki K, Nakatani K, Arai T, Ohmura K, Takeuchi R, Arai Y, Takeuchi S (2008) A quadratic element method for evaluating groundwater flow by the inversion of surface tilt with application to the Tono Area, Japan. J Hydrol 360:217–229. doi:10.1016/ j.jhydrol.2008.07.033CrossRefGoogle Scholar
  21. Rebscher D, Westerhaus M, Welle W, Nandaka I (2000) Monitoring ground deformation at the decade volcano Gunung Merapi, Indonesia. Phys Chem Earth Pt A 25(9–11):755–757CrossRefGoogle Scholar
  22. Rice JR, Cleary MP (1976) Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev Geophys Space Phys 14(2):227–241CrossRefGoogle Scholar
  23. Urlaub M, Fabian M (2011) Poroelasticity: finite element modelling of anomalous tilt and pore pressure caused by pumping in a sedimentary half space with fault. J Geodyn 51(4):219–232. doi:10.1016/j.jog.2010.09.001CrossRefGoogle Scholar
  24. Wang R, Kümpel HJ (2003) Poroelasticity: efficient modeling of strongly coupled, slow deformation processes in a multilayered half-space. Geophysics 68(2):705–717. doi:10.1190/1.1567241CrossRefGoogle Scholar
  25. Warpinksi N, Branagan P, Engler B, Wilmer R, Wolhart S (1997) Evaluation of a downhole tiltmeter array for monitoring hydraulic fractures. Int J Rock Mech Min 34:108.e1–108.e13. doi:10.1016/S1365-1609(97)00088-9Google Scholar
  26. Weise A, Jentzsch G, Kiviniemi A, Kääriäinen J (1999) Comparison of long-period tilt measurements: results from the two clinometric stations Metsähovi and Lohja, Finland. J Geodyn 27(2):237–257. doi:10.1016/S0264-3707(97)00067-7CrossRefGoogle Scholar
  27. Wenzel H (1996) The nanogal software: earth tide data processing package ETERNA 3.30. Bull d’Inf Marées Terrestres 124: 9425–9439Google Scholar
  28. Zschau J, Gerstenecker C (1977) Nonlocal anisotropy of earth tidal tilt in the vicinity of a deep active fault. In: Proceedings of 8th international symposium on Earth tides, Bonn, pp 409–417Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Matthias Queitsch
    • 1
    Email author
  • Gerhard Jentzsch
    • 1
  • Adelheid Weise
    • 1
  • Hiroshi Ishii
    • 2
  • Yashuiro Asai
    • 2
  1. 1.Institute of GeosciencesJenaGermany
  2. 2.Tono Research Institute of Earthquake ScienceMizunamiJapan

Personalised recommendations