Advertisement

New Finite-Element Modelling of Subduction Processes in the Andes Using Realistic Geometries

  • Stefanie ZeumannEmail author
  • Rekha Sharma
  • René Gassmöller
  • Thomas Jahr
  • Gerhard Jentzsch
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 139)

Abstract

The aim of this work is the better understanding of geophysical processes in subduction zones by Finite element modelling. Here we study the effects of various parameters on the deformation and stress field. The tested parameters are the friction coefficient, convergence obliquity, bending of the subduction zone, realistic geometry and visco-elasticity. Increasing the friction coefficient from 0.0 to 0.4 increases the compression by 28 %. For both friction coefficients obliquity leads to higher compression compared to straight convergence. Comparison of the model results with real topographic data reveals considerable analogies even if crustal structure is generalised. To obtain a more realistic structure for the lithosphere we adopted the geometry from well constrained density models. For these models we chose the region in the South American subduction zone around Iquique in North Chile. Including viscosity in the models has a large effect on stress and strain. In a pure elastic model stress and strain develops nearly linear. In contrast curves for the visco-elastic models show a stress maximum and a zone of maximum curvature for the strain. The stress pattern agrees well with the earthquake distribution.

Keywords

Andes Finite element Geodynamic modelling Subduction processes 

Notes

Acknowledgements

This work is part of the project IMOSAGA, a cooperation with University Kiel and TU Munich within the German priority program “Mass transport and mass distribution in the system Earth” (SPP 1257). The research is supported by the German research foundation (DFG). We thank the reviewers for improving the paper by their helpful comments and recommendations.

References

  1. ABAQUS (2010) Version 6.10. Dassault Systèmes Simulia Corp., Providence. Link to online tutorial: http://abaqus.civil.uwa.edu.au:2080/v6.10/index.html
  2. ANCORP Working group (2003) Seismic imaging of convergent continental margin and plateau in the central Andes (Andean Continental Research Project 1996 (ANCORP’96)). J Geophys Res 108(B7):2328. doi: 10.1029/2002JB001771 Google Scholar
  3. Babeyko AY, Sobolev SV (2008) High-resolution numerical modelling of stress distribution in visco-elasto-plastic subducting slabs. Lithos 103:205–216. doi: 10.1016/j.lithos.2007.09015 CrossRefGoogle Scholar
  4. Barnes JB, Ehlers TA (2009) End member models for Andean Plateau uplift. Earth Sci Rev 97:105–132. doi: 10.1016/j.earscirev.2009.08.003 CrossRefGoogle Scholar
  5. Hoffmann-Rothe A, Kukowski N, Dresen G, Echtler H, Oncken O, Klotz J, Scheuber E, Kellner A (2006) Oblique convergence along the Chilean margin: partitioning, margin-parallel faulting and force interaction at the plate interface. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The~Andes—active subduction orogeny, vol 1, Frontiers in earth science series. Springer, Heidelberg, pp 125–146Google Scholar
  6. Klotz J, Abolghasem A, Khazaradze G, Heinze B, Vietor T, Hackney R, Bataille K, Maturana R, Viramonte J, Perdomo R (2006) Long-term signals in the present-day deformation field of the Central and Southern Andes and constraints on the viscosity of the earth’s upper mantle. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes—active subduction orogeny, vol 1, Frontiers in earth science series. Springer, Heidelberg, pp 65–89Google Scholar
  7. Köther N, Götze H-J, Gutknecht BD, Jahr T, Jentzsch G, Lücke OH, Mahatsente R, Sharma R, Zeumann S (2012) The seismically active Andean and Central American margins: can satellite gravity map lithospheric structures? J Geodyn 59-60C. doi: 10.1016/j.jog.2011.11.004
  8. Liu M, Yang Y, Stein S, Klosko E (2002) Crustal shortening and extension in the Central Andes: insights from a viscoelastic model. In: Stein S, Freymueller JT (eds) Plate boundary zones, vol 30, Geodyn Ser. AGU, Washington, DC, pp 325–339. doi: 10.1029/GD030p0325 Google Scholar
  9. Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) (2006) The Andes—active subduction orogeny. Frontiers in earth science series, vol 1. Springer, Heidelberg, pp 3–27Google Scholar
  10. Ranalli G (1995) Rheology of the earth, 2nd edn. Chapman & Hall, London, p 413Google Scholar
  11. Somoza R (1998) Updated Nazca (Farallon)-South America relative motions during the last 40 my: implications for mountain building in the central Andean region. J South Am Earth Sci 11(3):211–215. doi: 10.1016/S0895-9811(98)00012-1 CrossRefGoogle Scholar
  12. Tassara A, Götze H-J, Schmidt S, Hackney R (2006) Three-dimensional density model of the Nazca plate and the Andean continental margin. J Geophys Res 111:B09404. doi: 10.1029/2005JB003976 Google Scholar
  13. Tichelaar BW, Ruff LJ (1991) Seismic coupling along the Chilean subduction zone. J Geophys Res 96(B7):11997–12022. doi: 10.1029/91JB00200 CrossRefGoogle Scholar
  14. Wang K, Suyehiro K (1999) How does plate coupling affect crustal stresses in northeast and southwest Japan? Geophys Res Lett 26(15):2307–2310. doi: 10.1029/1999GL900528 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Stefanie Zeumann
    • 1
    Email author
  • Rekha Sharma
    • 1
  • René Gassmöller
    • 2
  • Thomas Jahr
    • 1
  • Gerhard Jentzsch
    • 1
  1. 1.Institute of Geosciences, Friedrich Schiller UniversityJenaGermany
  2. 2.GFZ German Research Centre for Geosciences, Section Geodynamic ModellingPotsdamGermany

Personalised recommendations