Mean Dynamic Ocean Topography in the Southern Ocean from GRACE and GOCE and Multi-mission Altimeter Data

  • Alberta AlbertellaEmail author
  • Roman Savcenko
  • Tijana Janjić
  • Reiner Rummel
  • Wolfgang Bosch
  • Jens Schröter
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 139)


The ocean north of the Antarctic continent is one of the most dynamic ocean areas on our globe. It is also critical for the regulation of the global climate. We compute a high resolution mean dynamical ocean topography (MDT) using geodetic data and derive a detailed model of the global ocean circulation in this crucial area. The MDT is determined using multi-mission altimeter data and the GRACE/GOCE gravity model GOCO2s. The mean sea surface is observed from joint cross-over adjustment of 17 years of satellite altimetry. The two geodetic gravity missions GRACE and GOCE allow the computation of a global geoid with unprecedented accuracy and spatial resolution. While GRACE greatly improved the accuracy and global consistency of gravity models at long to medium wavelengths, GOCE is adding highly accurate geoid information in the medium wavelength range. The geoid and mean sea surface have been made consistent by a spectral filter. The MDT is represented as a spherical harmonic expansion. This allows us to analyze the oceanographic content in different wavelength bands. In order to assess properties of the MDT and of the derived geostrophic velocity field, velocities are compared with independent data from satellite tracked surface drifters in the area of the Antarctic Circumpolar Current (ACC). The RMS of the differences is less than 9 cm/s even if shortest scales (100 km) are considered. Our study shows that, with just 6 months of GOCE data, we are able to improve significantly the geodetic MDT.


Gravity model GOCE Mean dynamic ocean topography Geostrophic velocities 



This work has been funded under DFG Priority Research Programme SPP 1257 “Mass Transport and Mass Distribution in the Earth System”. Sincere thanks go to the three anonymous reviewers who helped improve the paper.


  1. Albertella A, Rummel R (2009) On the spectral consistency of the altimetric ocean and geoid surface: a one-dimensional example. J Geod 83(9):805–815. doi:10.1007/s00190-008-0299-5CrossRefGoogle Scholar
  2. Albertella A, Savcenko R, Janjić T, Rummel R, Bosch W, Schröter J (2012) High resolution dynamic ocean topography in the Southern Ocean from GOCE. Geophys J Int 190(2):922–930. doi:10.1111/j.1365-246x.2012.05531.xCrossRefGoogle Scholar
  3. Balmino G, Perosanz F, Rummel R, Sneeuw N, Sünkel H (1999) CHAMP, GRACE and GOCE: mission concepts and simulations. Boll Geofis Teor Appl 40(3–4):309–319Google Scholar
  4. Bingham RJ, Haines K, Hughes CW (2008) Calculating the ocean’s mean dynamic topography from a mean sea surface and a geoid. J Atmos Ocean Technol 25(10):1808–1822. doi: Google Scholar
  5. Bingham RJ, Knudsen P, Andersen O, Pail R (2011) An initial estimate of the North Atlantic steady-state geostrophic circulation from GOCE. Geophys Res Lett 38:L01606. doi:10.1029/2010GL045633CrossRefGoogle Scholar
  6. Bosch W, Savcenko R (2012) Comparison of mean sea surface DGFI. Internal Report, 89. Deutsches Geodätisches Forschungsinstitut, Munich, GermanyGoogle Scholar
  7. Gille ST (2003) Float observations of the Southern Ocean: PartI: estimating mean fields, bottom velocities, and topographic steering. J Phys Oceanogr 33:1167–1181CrossRefGoogle Scholar
  8. Hernandez F, Schaeffer P (2000) Altimetric mean sea surfaces and gravity anomaly maps inter-comparisons. CLS, AVI-NT-011-5242-CLSGoogle Scholar
  9. Janjić T, Nerger L, Albertella A, Schröter J, Skachko S (2011) On domain localization in ensemble based Kalman filter algorithms. Mon Weather Rev 139(7):2046–2060.doi:10.1175/2011MWR 3552.1CrossRefGoogle Scholar
  10. Janjić T, Schröter J, Savcenko R, Bosch W, Albertella A, Rummel R, Klatt O (2012) Impact of combining GRACE and GOCE gravity data on ocean circulation estimates. Ocean Sci 8:65–79. doi:10.5194/os-8-65-2012CrossRefGoogle Scholar
  11. Knudsen P, Bingham R, Andersen O, Rio MH (2011) A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model. J Geod 85(11):861–879. doi:10.1007/s00190-011-0500-0CrossRefGoogle Scholar
  12. Kurtenbach E, Mayer-Gürr T, Eicker A (2009) Deriving daily snapshots of the Earth’s gravity field from GRACE L1B data using Kalman filtering. Geophys Res Lett 36:L17102. doi:10.1029/2009GL039564CrossRefGoogle Scholar
  13. Le Grand P (2001) Impact of the gravity field and steady-state ocean circulation explorer (GOCE) mission on ocean circulation estimates. Volume fluxes in a climatological inverse model of the Atlantic. J Geophys Res (Oceans) 106:19597–19610Google Scholar
  14. Lumpkin R, Pazos M (2007) Lagrangian analysis and prediction of coastal and ocean dynamics (LAPCOD). In: Griffa A, Kirwan AD, Mariano A, Özgökmen T, Rossby T (eds) Measuring surface currents with surface velocity program drifters: the instrument, its data, and some recent results, Chap.  2. Cambridge University Press, Cambridge
  15. Maximenko N, Niiler P, Centurioni L, Rio MH, Melnichenko O, Chambers D, Zlotnicki V, Galperin B (2009) Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques. J Atmos Ocean Technol 26:1910–1919. doi: Google Scholar
  16. Pail R, Goiginger H, Schuh WD, Höck E, Brockmann JM, Fecher T, Gruber T, Mayer-Gürr T, Kusche J, Jäggi A, Rieser D (2010) Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys Res Lett 37:EID L20314. doi:10.1029/2010GL044906Google Scholar
  17. Rummel R, Yi W, Stummer C (2011) GOCE gravitational gradiometry. J Geod 85(11):777–790. doi:10.1007/s00190-011-0500-0CrossRefGoogle Scholar
  18. Schröter J, Losch M, Sloyan BM (2002) Impact of the GOCE gravity mission on ocean circulation estimates: Part II. Volume and heat fluxes across hydrographic sections of unequally spaced stations. J Geophys Res (Oceans) 107(C2):1–20CrossRefGoogle Scholar
  19. Wunsch C (1993) Physics of the ocean circulation. In: Satellite altimetry and geodesy and oceanography. Lecture notes in Earth sciences, vol 50. Springer, Berlin, pp 17–91Google Scholar
  20. Wunsch C (1996) The ocean circulation inverse problem. Cambridge University Press, Cambridge, 437 ppCrossRefGoogle Scholar
  21. Zenner L (2006) Zeitliche Schwerefeldvariationen aus GRACE und Hydrologiemodellen. Diplomarbeit on TU München, IAPG., Nr. D185Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alberta Albertella
    • 1
    Email author
  • Roman Savcenko
    • 2
  • Tijana Janjić
    • 3
  • Reiner Rummel
    • 1
  • Wolfgang Bosch
    • 2
  • Jens Schröter
    • 3
  1. 1.TU München Institute of Astronomical and Physical GeodesyMunichGermany
  2. 2.Deutsches Geodätisches ForschungsinstitutMünchenGermany
  3. 3.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany

Personalised recommendations