Skip to main content

Predicting Personality Using Novel Mobile Phone-Based Metrics

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNISA,volume 7812)

Abstract

The present study provides the first evidence that personality can be reliably predicted from standard mobile phone logs. Using a set of novel psychology-informed indicators that can be computed from data available to all carriers, we were able to predict users’ personality with a mean accuracy across traits of 42% better than random, reaching up to 61% accuracy on a three-class problem. Given the fast growing number of mobile phone subscription and availability of phone logs to researchers, our new personality indicators open the door to exciting avenues for future research in social sciences. They potentially enable cost-effective, questionnaire-free investigation of personality-related questions at a scale never seen before.

Keywords

  • Personality prediction
  • Big Data
  • Big Five Personality prediction
  • Carrier’s log
  • CDR

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-37210-0_6
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-37210-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. CNET, 2011 ends with almost 6 billion mobile phone subscriptions, http://news.cnet.com/8301-1023_3-57352095-93/2011-ends-with-almost-6-billion-mobile-phone-subscriptions/

  2. de Montjoye, Y.-A., Hidalgo, C., Verleysen, M., Blondel, V.: Unique in the Crowd: The privacy bounds of human mobility. Nature Sci. Rep. (2013)

    Google Scholar 

  3. CNN, Your phone company is selling your personal data, http://money.cnn.com/2011/11/01/technology/verizon_att_sprint_tmobile_privacy/index.htm

  4. de Oliveira, R., et al.: Towards a psychographic user model from mobile phone usage. In: Proceedings of the 2011 Annual Conference Extended Abstracts on Human Factors in Computing Systems. ACM (2011)

    Google Scholar 

  5. Arteaga, S.M., Kudeki, M., Woodworth, A.: Combating obesity trends in teenagers through persuasive mobile technology. ACM SIGACCESS Accessibility and Computing 94, 17–25 (2009)

    CrossRef  Google Scholar 

  6. Back, M.D., et al.: Facebook profiles reflect actual personality, not self-idealization. Psychological Science 21(3), 372–374 (2010)

    MathSciNet  CrossRef  Google Scholar 

  7. Counts, S., Stecher, K.: Self-presentation of personality during online profile creation. In: Proc. AAAI Conf. on Weblogs and Social Media (ICWSM) (2009)

    Google Scholar 

  8. Stecher, K., Counts, S.: Spontaneous inference of personality traits and effects on memory for online profiles. In: Proc. Int. AAAI Conference on Weblogs and Social Media (ICWSM) (2008)

    Google Scholar 

  9. Chittaranjan, G., Blom, J., Gatica-Perez, D.: Mining large-scale smartphone data for personality studies. In: Personal and Ubiquitous Computing (2012)

    Google Scholar 

  10. Do, T.M.T., Gatica-Perez, D.: By their apps you shall understand them: mining large-scale patterns of mobile phone usage. In: Proceedings of the 9th International Conference on Mobile and Ubiquitous Multimedia. ACM (2010)

    Google Scholar 

  11. Verkasalo, H., et al.: Analysis of users and non-users of smartphone applications. Telematics and Informatics 27(3), 242–255 (2010)

    CrossRef  Google Scholar 

  12. Staiano, J., et al.: Friends dont Lie–Inferring Personality Traits from Social Network Structure (2012)

    Google Scholar 

  13. Pianesi, F., et al.: Multimodal recognition of personality traits in social interactions. In: Proceedings of the 10th International Conference on Multimodal Interfaces. ACM (2008)

    Google Scholar 

  14. Lynn, R., Martin, T.: Gender differences in extraversion, neuroticism, and psychoticism in 37 nations. J. Soc. Psychol. 137(3), 369–373 (1997)

    CrossRef  Google Scholar 

  15. Selfhout, M., et al.: Emerging late adolescent friendship networks and Big Five personality traits: A social network approach. J. Pers. 78(2), 509–538 (2010)

    CrossRef  Google Scholar 

  16. MacCann, C., Duckworth, A.L., Roberts, R.D.: Empirical identification of the major facets of conscientiousness. Learning and Individual Differences 19(4), 451–458 (2009)

    CrossRef  Google Scholar 

  17. MIT Human Dynamics Lab, Reality Commons, http://realitycommons.media.mit.edu/

  18. Aharony, N., et al.: Social fMRI: Investigating and shaping social mechanisms in the real world. In: Pervasive and Mobile Computing (2011)

    Google Scholar 

  19. Onnela, J.P., et al.: Structure and tie strengths in mobile communication networks. Proc. Natl. Acad. Sci. U S A 104, 7332–7336 (2007)

    CrossRef  Google Scholar 

  20. Meloni, S., et al.: Modeling human mobility responses to the large-scale spreading of infectious diseases. Nature Scientific Reports 1 (2011)

    Google Scholar 

  21. Balcan, D., et al.: Multiscale mobility networks and the spatial spreading of infectious diseases. Proc. Natl. Acad. Sci. USA 106, 21484–21489 (2009)

    CrossRef  Google Scholar 

  22. Gonzalez, M., Hidalgo, C., Barabasi, A.: Understanding individual human mobility patterns. Nature 453, 779–782 (2008)

    CrossRef  Google Scholar 

  23. McCrae, R.R., John, O.P.: An introduction to the fivefactor model and its applications. Journal of personality 60(2), 175–215 (1992)

    CrossRef  Google Scholar 

  24. Williams, M.J., Whitaker, R.M., Allen, S.M.: Measuring Individual Regularity in Human Visiting Patterns. In: ASE International Conference on Social Computing (2012)

    Google Scholar 

  25. John, O.P., Srivastava, S.: The Big Five trait taxonomy: History, measurement, and theoretical perspectives. In: Handbook of personality: Theory and Research 2, pp. 102–138 (1999)

    Google Scholar 

  26. Benson, M.J., Campbell, J.P.: To be, or not to be, linear: An expanded representation of personality and its relationship to leadership performance. Int. J. Select. Asses. 15(2), 232–249 (2007)

    CrossRef  Google Scholar 

  27. Cucina, J.M., Vasilopoulos, N.L.: Nonlinear personality performance relationships and the spurious moderating effects of traitedness. J. Pers. 73(1), 227–260 (2004)

    CrossRef  Google Scholar 

  28. MacCallum, R.C., et al.: On the practice of dichotomization of quantitative variables. Psychol. methods 7(1), 19 (2002)

    CrossRef  Google Scholar 

  29. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 389–422 (2002)

    MATH  CrossRef  Google Scholar 

  30. Gomez, A., Gomez, R.: Personality traits of the behavioural approach and inhibition systems: Associations with processing of emotional stimuli. Pers. Indiv. Differ. 32(8), 1299–1316 (2002)

    CrossRef  Google Scholar 

  31. Vazire, S.: Who knows what about a person? The self-other knowledge asymmetry (SOKA) model. J. Pers. Soc. Psychol. 98(2), 281 (2010)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Montjoye, YA., Quoidbach, J., Robic, F., Pentland, A.(. (2013). Predicting Personality Using Novel Mobile Phone-Based Metrics. In: Greenberg, A.M., Kennedy, W.G., Bos, N.D. (eds) Social Computing, Behavioral-Cultural Modeling and Prediction. SBP 2013. Lecture Notes in Computer Science, vol 7812. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37210-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37210-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37209-4

  • Online ISBN: 978-3-642-37210-0

  • eBook Packages: Computer ScienceComputer Science (R0)