Predicting Personality Using Novel Mobile Phone-Based Metrics

  • Yves-Alexandre de Montjoye
  • Jordi Quoidbach
  • Florent Robic
  • Alex (Sandy) Pentland
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7812)

Abstract

The present study provides the first evidence that personality can be reliably predicted from standard mobile phone logs. Using a set of novel psychology-informed indicators that can be computed from data available to all carriers, we were able to predict users’ personality with a mean accuracy across traits of 42% better than random, reaching up to 61% accuracy on a three-class problem. Given the fast growing number of mobile phone subscription and availability of phone logs to researchers, our new personality indicators open the door to exciting avenues for future research in social sciences. They potentially enable cost-effective, questionnaire-free investigation of personality-related questions at a scale never seen before.

Keywords

Personality prediction Big Data Big Five Personality prediction Carrier’s log CDR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    de Montjoye, Y.-A., Hidalgo, C., Verleysen, M., Blondel, V.: Unique in the Crowd: The privacy bounds of human mobility. Nature Sci. Rep. (2013)Google Scholar
  3. 3.
  4. 4.
    de Oliveira, R., et al.: Towards a psychographic user model from mobile phone usage. In: Proceedings of the 2011 Annual Conference Extended Abstracts on Human Factors in Computing Systems. ACM (2011)Google Scholar
  5. 5.
    Arteaga, S.M., Kudeki, M., Woodworth, A.: Combating obesity trends in teenagers through persuasive mobile technology. ACM SIGACCESS Accessibility and Computing 94, 17–25 (2009)CrossRefGoogle Scholar
  6. 6.
    Back, M.D., et al.: Facebook profiles reflect actual personality, not self-idealization. Psychological Science 21(3), 372–374 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Counts, S., Stecher, K.: Self-presentation of personality during online profile creation. In: Proc. AAAI Conf. on Weblogs and Social Media (ICWSM) (2009)Google Scholar
  8. 8.
    Stecher, K., Counts, S.: Spontaneous inference of personality traits and effects on memory for online profiles. In: Proc. Int. AAAI Conference on Weblogs and Social Media (ICWSM) (2008)Google Scholar
  9. 9.
    Chittaranjan, G., Blom, J., Gatica-Perez, D.: Mining large-scale smartphone data for personality studies. In: Personal and Ubiquitous Computing (2012)Google Scholar
  10. 10.
    Do, T.M.T., Gatica-Perez, D.: By their apps you shall understand them: mining large-scale patterns of mobile phone usage. In: Proceedings of the 9th International Conference on Mobile and Ubiquitous Multimedia. ACM (2010)Google Scholar
  11. 11.
    Verkasalo, H., et al.: Analysis of users and non-users of smartphone applications. Telematics and Informatics 27(3), 242–255 (2010)CrossRefGoogle Scholar
  12. 12.
    Staiano, J., et al.: Friends dont Lie–Inferring Personality Traits from Social Network Structure (2012)Google Scholar
  13. 13.
    Pianesi, F., et al.: Multimodal recognition of personality traits in social interactions. In: Proceedings of the 10th International Conference on Multimodal Interfaces. ACM (2008)Google Scholar
  14. 14.
    Lynn, R., Martin, T.: Gender differences in extraversion, neuroticism, and psychoticism in 37 nations. J. Soc. Psychol. 137(3), 369–373 (1997)CrossRefGoogle Scholar
  15. 15.
    Selfhout, M., et al.: Emerging late adolescent friendship networks and Big Five personality traits: A social network approach. J. Pers. 78(2), 509–538 (2010)CrossRefGoogle Scholar
  16. 16.
    MacCann, C., Duckworth, A.L., Roberts, R.D.: Empirical identification of the major facets of conscientiousness. Learning and Individual Differences 19(4), 451–458 (2009)CrossRefGoogle Scholar
  17. 17.
    MIT Human Dynamics Lab, Reality Commons, http://realitycommons.media.mit.edu/
  18. 18.
    Aharony, N., et al.: Social fMRI: Investigating and shaping social mechanisms in the real world. In: Pervasive and Mobile Computing (2011)Google Scholar
  19. 19.
    Onnela, J.P., et al.: Structure and tie strengths in mobile communication networks. Proc. Natl. Acad. Sci. U S A 104, 7332–7336 (2007)CrossRefGoogle Scholar
  20. 20.
    Meloni, S., et al.: Modeling human mobility responses to the large-scale spreading of infectious diseases. Nature Scientific Reports 1 (2011)Google Scholar
  21. 21.
    Balcan, D., et al.: Multiscale mobility networks and the spatial spreading of infectious diseases. Proc. Natl. Acad. Sci. USA 106, 21484–21489 (2009)CrossRefGoogle Scholar
  22. 22.
    Gonzalez, M., Hidalgo, C., Barabasi, A.: Understanding individual human mobility patterns. Nature 453, 779–782 (2008)CrossRefGoogle Scholar
  23. 23.
    McCrae, R.R., John, O.P.: An introduction to the fivefactor model and its applications. Journal of personality 60(2), 175–215 (1992)CrossRefGoogle Scholar
  24. 24.
    Williams, M.J., Whitaker, R.M., Allen, S.M.: Measuring Individual Regularity in Human Visiting Patterns. In: ASE International Conference on Social Computing (2012)Google Scholar
  25. 25.
    John, O.P., Srivastava, S.: The Big Five trait taxonomy: History, measurement, and theoretical perspectives. In: Handbook of personality: Theory and Research 2, pp. 102–138 (1999)Google Scholar
  26. 26.
    Benson, M.J., Campbell, J.P.: To be, or not to be, linear: An expanded representation of personality and its relationship to leadership performance. Int. J. Select. Asses. 15(2), 232–249 (2007)CrossRefGoogle Scholar
  27. 27.
    Cucina, J.M., Vasilopoulos, N.L.: Nonlinear personality performance relationships and the spurious moderating effects of traitedness. J. Pers. 73(1), 227–260 (2004)CrossRefGoogle Scholar
  28. 28.
    MacCallum, R.C., et al.: On the practice of dichotomization of quantitative variables. Psychol. methods 7(1), 19 (2002)CrossRefGoogle Scholar
  29. 29.
    Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 389–422 (2002)MATHCrossRefGoogle Scholar
  30. 30.
    Gomez, A., Gomez, R.: Personality traits of the behavioural approach and inhibition systems: Associations with processing of emotional stimuli. Pers. Indiv. Differ. 32(8), 1299–1316 (2002)CrossRefGoogle Scholar
  31. 31.
    Vazire, S.: Who knows what about a person? The self-other knowledge asymmetry (SOKA) model. J. Pers. Soc. Psychol. 98(2), 281 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yves-Alexandre de Montjoye
    • 1
  • Jordi Quoidbach
    • 2
  • Florent Robic
    • 3
  • Alex (Sandy) Pentland
    • 1
  1. 1.The Media LaboratoryMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of PsychologyHarvard UniversityCambridgeUSA
  3. 3.Ecole Normale Supérieure de LyonLyonFrance

Personalised recommendations