Skip to main content

Modeling the Social Response to a Disease Outbreak

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7812))

Abstract

With the globalization of travel and economic trade, disease can spread rapidly across the globe, sometimes causing panic, population flight and other forms of social disorder. These responses often herald a significant change in the epidemiological pattern or etiology of an infectious disease event. It is therefore increasingly important not only to detect outbreaks of infectious disease early, but also to anticipate and describe the social response to the disease. We use social network analysis to model situations in which a society exhibits social strain in connection with a disease. We model negative social response (NSR) by coupling disease spread and opinion diffusion and verify the results against real-world scenarios. This model captures the complex interaction between disease and culturally determined social responses, providing insights that may help operational analysts and policy makers better respond to sudden disease outbreaks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Glass, T.: Bioterrorism and the people: How to vaccinate a city against panic. Clin. Infect. Dis. 34, 217–223 (2002)

    Article  Google Scholar 

  2. Mob stones Chilean bus amid flu fears. Sydney Morning Herald (2009), http://news.smh.com.au

  3. Desvarieux, J.: At the heart of Haiti’s cholera riots, anger at the U.N. Time (2010), http://www.time.com

  4. Biryabarema, E.: Uganda says avoid handshakes as ebola returns. Reuters (2012), http://www.reuters.com

  5. Strong, P.: Epidemic psychology: A model. Sociol. Health Ill. 12, 249–259 (1990)

    Article  Google Scholar 

  6. Ascel Bio, http://www.ascelbio.com/

  7. Keeling, M.J., Eames, K.T.D.: Networks and epidemic models. J. R. Soc. Interface 2, 295–307 (2005)

    Article  Google Scholar 

  8. Acemoglu, D., Ozdaglar, A.: Opinion dynamics and learning in social networks. Dyn. Games Appl. 1, 3–49 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonabeau, E.: Agent-based modeling: Methods and techniques for simulating human systems. PNAS 99, 7280–7287 (2002)

    Article  Google Scholar 

  10. Funk, S., Salathe, M., Jansen, V.A.A.: Modelling the influence of human behavior on the spread of infectious diseases: A review. J. R. Soc. Interface 7, 1247–1256 (2010)

    Article  Google Scholar 

  11. Meloni, S., Perra, N., Arenas, A., Gomez, S., Moreno, Y., Vespignani, A.: Modeling human mobility responses to the large-scale spreading of infectious diseases. Sci. Rep. 1, 1–7 (2011)

    Article  Google Scholar 

  12. Epstein, J.M., Parker, J., Cummings, D., Hammond, R.A.: Coupled contagion dynamics of fear and disease. Mathematical and Computational Explorations. PLOS One 3, 1–11 (2008)

    Article  Google Scholar 

  13. Funk, S., Gilad, E., Watkins, C., Jansen, V.A.: The spread of awareness and its impact on epidemic outbreaks. Proc. Natl Acad. Sci. USA 106, 6872–6877 (2009)

    Article  MATH  Google Scholar 

  14. Acemoglu, D., Ozdaglar, A., ParandehGheibi, A.: Spread of misinformation in social networks. GEB 70, 194–227 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Kermack, W., McKendrick, A.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. A 115, 700–721 (1927)

    Article  MATH  Google Scholar 

  16. Waxman, B.M.: Routing of multipoint connections. IEEE J. Sel. Areas Commun. 6, 1617–1622 (1998)

    Article  Google Scholar 

  17. Gilman, S.: Moral panic and pandemics. Lancet 375, 1866–1867 (2010)

    Article  Google Scholar 

  18. Dengue cases touch 478. Hindustan Times (2008), http://www.hindustantimes.com

  19. Gupta, E., Dar, L., Kapoor, G., Broor, S.: The changing epidemiology of dengue in Delhi, India. Virol. J. 3 (2006)

    Google Scholar 

  20. Argentina admits dengue epidemics in northern provinces. MercoPress (2009), http://en.mercopress.com

  21. Masuh, H.: Re-emergence of dengue in Argentina: Historical development and future challenges. Dengue Bulletin 32, 44–54 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Evans, J., Fast, S., Markuzon, N. (2013). Modeling the Social Response to a Disease Outbreak. In: Greenberg, A.M., Kennedy, W.G., Bos, N.D. (eds) Social Computing, Behavioral-Cultural Modeling and Prediction. SBP 2013. Lecture Notes in Computer Science, vol 7812. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37210-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37210-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37209-4

  • Online ISBN: 978-3-642-37210-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics