A New Implementation of Geometric Semantic GP and Its Application to Problems in Pharmacokinetics

  • Leonardo Vanneschi
  • Mauro Castelli
  • Luca Manzoni
  • Sara Silva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7831)


Moraglio et al. have recently introduced new genetic operators for genetic programming, called geometric semantic operators. These operators induce a unimodal fitness landscape for all the problems consisting in matching input data with known target outputs (like regression and classification). This feature facilitates genetic programming evolvability, which makes these operators extremely promising. Nevertheless, Moraglio et al. leave open problems, the most important one being the fact that these operators, by construction, always produce offspring that are larger than their parents, causing an exponential growth in the size of the individuals, which actually renders them useless in practice. In this paper we overcome this limitation by presenting a new efficient implementation of the geometric semantic operators. This allows us, for the first time, to use them on complex real-life applications, like the two problems in pharmacokinetics that we address here. Our results confirm the excellent evolvability of geometric semantic operators, demonstrated by the good results obtained on training data. Furthermore, we have also achieved a surprisingly good generalization ability, a fact that can be explained considering some properties of geometric semantic operators, which makes them even more appealing than before.


Root Mean Square Error Random Tree Semantic Space Bioavailability Problem Geometric Crossover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Archetti, F., Lanzeni, S., Messina, E., Vanneschi, L.: Genetic programming for computational pharmacokinetics in drug discovery and development. Genetic Programming and Evolvable Machines 8, 413–432 (2007)CrossRefGoogle Scholar
  2. 2.
    Beadle, L., Johnson, C.: Semantically driven crossover in genetic programming. In: Proc. of the IEEE World Congress on Comput. Intelligence, pp. 111–116. IEEE Press (2008)Google Scholar
  3. 3.
    Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 184–192. Morgan Kaufmann (1995)Google Scholar
  4. 4.
    Kennedy, T.: Managing the drug discovery/development interface. Drug Discovery Today 2(10), 436–444 (1997)CrossRefGoogle Scholar
  5. 5.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  6. 6.
    Krawiec, K.: Medial Crossovers for Genetic Programming. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS, vol. 7244, pp. 61–72. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Krawiec, K., Lichocki, P.: Approximating geometric crossover in semantic space. In: GECCO 2009, July 8-12, pp. 987–994. ACM (2009)Google Scholar
  8. 8.
    Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer (2002)Google Scholar
  9. 9.
    McPhee, N.F., Ohs, B., Hutchison, T.: Semantic Building Blocks in Genetic Programming. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 134–145. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric Semantic Genetic Programming. In: Coello Coello, C.A., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN XII, Part I. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Nguyen, Q.U., Nguyen, X.H., O’Neill, M.: Semantic Aware Crossover for Genetic Programming: The Case for Real-Valued Function Regression. In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 292–302. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Quang, U.N., Nguyen, X.H., O’Neill, M.: Semantics based mutation in genetic programming: The case for real-valued symbolic regression. In: Matousek, R., Nolle, L. (eds.) 15th Intern. Conf. on Soft Computing, Mendel 2009, pp. 73–91 (2009)Google Scholar
  13. 13.
    Uy, N.Q., Hoai, N.X., O’Neill, M., McKay, B.: The Role of Syntactic and Semantic Locality of Crossover in Genetic Programming. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 533–542. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Uy, N.Q., Hoai, N.X., O’Neill, M., McKay, R.I., Galvan-Lopez, E.: Semantically-based crossover in genetic programming: application to real-valued symbolic regression. Genetic Programming and Evolvable Machines 12(2), 91–119 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Leonardo Vanneschi
    • 1
    • 2
    • 3
  • Mauro Castelli
    • 1
    • 2
  • Luca Manzoni
    • 3
  • Sara Silva
    • 2
    • 4
  1. 1.ISEGIUniversidade Nova de LisboaLisboaPortugal
  2. 2.INESC-IDIST / Universidade Técnica de LisboaLisboaPortugal
  3. 3.D.I.S.Co.Università degli Studi di Milano-BicoccaMilanoItaly
  4. 4.CISUCUniversidade de CoimbraCoimbraPortugal

Personalised recommendations