Analysis of Metabolic Evolution in Bacteria Using Whole-Genome Metabolic Models

  • Ali A. Faruqi
  • William A. Bryant
  • John W. Pinney
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7821)


Recent advances in the automation of metabolic model reconstruction have led to the availability of draft-quality metabolic models (predicted reaction complements) for multiple bacterial species. These reaction complements can be considered as trait representations and can be used for ancestral state reconstruction, to infer the most likely metabolic complements of common ancestors of all bacteria with generated metabolic models. We present here an ancestral state reconstruction for 141 extant bacteria and analyse the reaction gains and losses for these bacteria with respect to their lifestyles and pathogenic nature. A simulated annealing approach is used to look at coordinated metabolic gains and losses in two bacteria. The main losses of Onion yellows phytoplasma OY-M, an obligate intracellular pathogen, are shown (as expected) to be in cell wall biosynthesis. The metabolic gains made by Clostridium difficile CD196 in adapting to its current habitat in the human colon is also analysed. Our analysis shows that the capability to utilize N-Acetyl-neuraminic acid as a carbon source has been gained, rather than having been present in the Clostridium ancestor, as has the capability to synthesise phthiocerol dimycocerosate which could potentially aid the evasion of the host immune response. We have shown that the availability of large numbers of metabolic models, along with conventional approaches, has enabled a systematic method to analyse metabolic evolution in the bacterial domain.


Metabolic Evolution Ancestral State Reconstruction Metabolic Models Hierarchical Clustering Simulated Annealing Pathogenicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mithani, A., Preston, G.M., Hein, J.: A Bayesian Approach to the Evolution of Metabolic Networks on a Phylogeny. PLoS Computational Biology 6(8), e1000868 (2010)Google Scholar
  2. 2.
    Mazurie, A., Bonchev, D., Schwikowski, B.: Evolution of metabolic network organization. BMC Systems Biology 4(59) (2010)Google Scholar
  3. 3.
    Pfeiffer, T., Soyer, O.S., Bonhoeffer, S.: The evolution of connectivity in metabolic networks. PLoS Biology 3(7) (2005)Google Scholar
  4. 4.
    Pál, C., Papp, B., Lercher, M.J.: Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nature Genetics 37(12), 1372–1375 (2005)CrossRefGoogle Scholar
  5. 5.
    Yagi, J.M., Sims, D., Brettin, T., Bruce, D., Madsen, E.L.: The genome of Polaromonas naphthalenivorans strain CJ2, isolated from coal tar-contaminated sediment, reveals physiological and metabolic versatility and evolution through extensive horizontal gene transfer. Environmental Microbiology 11(9), 2253–2270 (2009)CrossRefGoogle Scholar
  6. 6.
    Petridis, M., Bagdasarian, M., Waldor, M.K., Walker, E.: Horizontal transfer of Shiga toxin and antibiotic resistance genes among Escherichia coli strains in house fly (Diptera: Muscidae) gut. Journal of Medical Entomology 43(2), 288–295 (2006)CrossRefGoogle Scholar
  7. 7.
    Zomorodipour, A., Andersson, S.G.E.: Obligate intracellular parasites: Rickettsia prowazekii and Chlamydia trachomatis. FEBS Letters 452(1), 11–15 (1999)CrossRefGoogle Scholar
  8. 8.
    Schluter, D., Price, T., Mooers, A.Ø., Ludwig, D.: Likelihood of ancestor states in adaptive radiation. Evolution 51, 1699–1711 (1997)CrossRefGoogle Scholar
  9. 9.
    Latysheva, N., Junker, V.L., Palmer, W.J., Codd, G.A., Barker, D.: The evolution of nitrogen fixation in cyanobacteria. Bioinformatics 28(5), 603–606 (2012)CrossRefGoogle Scholar
  10. 10.
    Merhej, V., Royer-Carenzi, M., Pontarotti, P., Raoult, D.: Massive comparative genomic analysis reveals convergent evolution of specialized bacteria. Biology Direct 4(13) (2009)Google Scholar
  11. 11.
    Baumler, D.J., Peplinski, R.G., Reed, J.L., Glasner, J.D., Perna, N.T.: The evolution of metabolic networks of E. coli. BMC Systems Biology 5(1), 182 (2011)CrossRefGoogle Scholar
  12. 12.
    Liao, L., Kim, S., Francois Tomb, J.: Genome comparisons based on profiles of metabolic pathways. In: Proceedings of the 6th International Conference on Knowledge-Based Intelligent Information and Engineering Systems, KES 2002, pp. 469–476 (2002)Google Scholar
  13. 13.
    Whitaker, J.W., Letunic, I., McConkey, G.A., Westhead, D.R.: metaTIGER: a metabolic evolution resource. Nucleic Acids Research 37(Database issue), D531–D538 (2009)Google Scholar
  14. 14.
    Henry, C.S., DeJongh, M., Best, A.A., Frybarger, P.M., Linsay, B., Stevens, R.L.: High-throughput generation, optimization and analysis of genome-scale metabolic models. Nature Biotechnology 28(9), 969–974 (2010)CrossRefGoogle Scholar
  15. 15.
    Ideker, T., Ozier, O., Schwikowski, B., Siegel, A.F.: Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(suppl. 1), S233–S240 (2002)Google Scholar
  16. 16.
    Katoh, K., Asimenos, G., Toh, H.: Multiple alignment of DNA sequences with MAFFT. Methods in Molecular Biology 537, 39–64 (2009)CrossRefGoogle Scholar
  17. 17.
    Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O.: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59(3), 307–321 (2010)CrossRefGoogle Scholar
  18. 18.
    Huson, D., Richter, D., Rausch, C., Dezulian, T.: Dendroscope: An interactive viewer for large phylogenetic trees. BMC Bioinformatics 8(460) (2007)Google Scholar
  19. 19.
    Zientz, E., Dandekar, T., Gross, R.: Metabolic interdependence of obligate intracellular bacteria and their insect hosts. Microbiology and Molecular Biology Reviews 68(4), 745–770 (2004)CrossRefGoogle Scholar
  20. 20.
    Maddison, W.P., Maddison, D.R.: Mesquite: a modular system for evolutionary analysis. Version 2.75 (2011),
  21. 21.
    Pagel, M.: The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Systematic Biology 48(3) (1999)Google Scholar
  22. 22.
    Swofford, D.L.: PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts (2003)Google Scholar
  23. 23.
    Hubert, L., Arabie, P.: Comparing partitions. Journal of Classification 2(1), 193–218 (1985)CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Oshima, K., Kakizawa, S., Nishigawa, H., Jung, H.Y., Wei, W.: Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nature Genetics 36(1), 27–29 (2003)CrossRefGoogle Scholar
  26. 26.
    Cox, J.S., Chen, B., McNeil, M., Jacobs, W.R.: Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402(6757), 79–83 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ali A. Faruqi
    • 1
  • William A. Bryant
    • 1
  • John W. Pinney
    • 1
  1. 1.South Kensington CampusImperial CollegeLondonUK

Personalised recommendations