Skip to main content

Inference of Tumor Phylogenies with Improved Somatic Mutation Discovery

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7821))

Abstract

Next-generation sequencing technologies provide a powerful tool for studying genome evolution during progression of advanced diseases such as cancer. Although many recent studies have employed new sequencing technologies to detect mutations across multiple, genetically related tumors, current methods do not exploit available phylogenetic information to improve the accuracy of their variant calls. Here, we present a novel algorithm that uses somatic single nucleotide variations (SNVs) in multiple, related tissue samples as lineage markers for phylogenetic tree reconstruction. Our method then leverages the inferred phylogeny to improve the accuracy of SNV discovery. Experimental analyses demonstrate that our method achieves up to 32% improvement for somatic SNV calling of multiple related samples over the accuracy of GATK’s Unified Genotyper, the state of the art multisample SNV caller.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bansal, V., et al.: Accurate detection and genotyping of SNPs utilizing population sequencing data. Genome Res. 20, 537–545 (2010)

    Article  Google Scholar 

  2. Beroukhim, R., et al.: The land-scape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010)

    Article  Google Scholar 

  3. Bignell, G.R., et al.: Signatures of mutation and selection in the cancer genome. Nature 463, 893–898 (2010)

    Article  Google Scholar 

  4. Campbell, P.J., et al.: Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing. Proc. Natl. Acad. Sci. U S A 105(35), 13081–13086 (2008)

    Article  Google Scholar 

  5. Chapman, M.A., et al.: Initial genome sequencing and analysis of multiple myeloma. Nature 471, 467–472 (2011)

    Article  Google Scholar 

  6. DePristo, M., et al.: A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genet. 43, 491–498 (2011)

    Article  Google Scholar 

  7. Ding, J., et al.: Feature based classifiers for somatic mutation detection in tumour-normal paired sequencing data. Bioinformatics 28(2), 167–175 (2012)

    Article  Google Scholar 

  8. Gerlinger, M., et al.: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012)

    Article  Google Scholar 

  9. Gerstung, M., et al.: Reliable detection of subclonal single-nucleotide variants in tumour cell populations. Nature Communications 3 (2011)

    Google Scholar 

  10. Greenman, C., et al.: Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007)

    Article  Google Scholar 

  11. Gusfield, D., Eddhu, S., Langley, C.: Efficient Reconstruction of Phylogenetic. Networks with Constrained Recombination. In: Proc. IEEE CSB (2003)

    Google Scholar 

  12. Gusfield, D.: Efficient algorithms for inferring evolutionary trees. Networks 21, 19–28 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Larson, D.E., et al.: SomaticSniper: Identification of Somatic Point Mutations in Whole Genome Sequencing Data. Bioinformatics 28(3), 311–317 (2012)

    Article  MathSciNet  Google Scholar 

  14. Ley, T.J., et al.: DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456, 66–72 (2008)

    Article  Google Scholar 

  15. Li, H., Durbin, R.: Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics 25, 1754–1760 (2009)

    Article  Google Scholar 

  16. McKenna, A., et al.: The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010)

    Article  Google Scholar 

  17. Mills, R.E., Luttig, C.T., Larkins, C.E., Beauchamp, A., Tsui, C., Pittard, W.S., Devine, S.E.: An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res. 16, 1182–1190 (2006)

    Article  Google Scholar 

  18. muTect: A Reliable and Accurate Method for Detecting Somatic Mutations in Next Generation Cancer Genome Sequencing, https://confluence.broadinstitute.org/display/CGATools/MuTect

  19. Newburger, D.E., et al.: Genome Evolution during Progression to Breast Cancer (submitted)

    Google Scholar 

  20. Nik-Zainal, S., et al.: Mutational Processes Molding the Genomes of 21 Breast Cancers. Cell 149, 979–993 (2012)

    Article  Google Scholar 

  21. Nik-Zainal, S., et al.: The life history of 21 breast cancers. Cell 149, 994–1007 (2012)

    Article  Google Scholar 

  22. Pleasance, E.D., et al.: A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463, 191–196 (2010)

    Article  Google Scholar 

  23. Roth, A., et al.: JointSNVMix: A Probabilistic Model For Accurate Detection of Somatic Mutations in Normal/Tumour Paired Next Generation Sequencing Data. Bioinformatics 28(7), 907–913 (2012)

    Article  Google Scholar 

  24. Rozowsky, J., et al.: Allseq: analysis of allele Specific Expression and Binding in a Network Framework. Mol. Sys. Bio. (2011)

    Google Scholar 

  25. Schwartz, R., Schackney, S.E.: Applying unmixing to gene expression data for tumor phylogeny inference. BMC Bioinformatics 11, 42 (2010)

    Article  Google Scholar 

  26. Shah, S., et al.: Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461(7265), 809–813 (2009)

    Article  Google Scholar 

  27. Stratton, M.R.: Exploring the genomes of cancer cells: progress and promise. Science 331, 1553–1558 (2011)

    Article  Google Scholar 

  28. Stratton, M.R., Campbell, P.J., Futreal, P.A.: The cancer genome. Nature 458, 719–724 (2009)

    Article  Google Scholar 

  29. The 1000 Genomes Project Consortium, et al.: A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010)

    Google Scholar 

  30. Whole Genome Simulation, http://sourceforge.net/apps/mediawiki/dnaa/index.php

  31. Zhang, G., et al.: Development of a phylogenetic tree model to investigate the role of genetic mutations in endometrial tumors. Oncol. Rep. 25(5), 1447–1454 (2011)

    Google Scholar 

  32. Zhang, Y., et al.: Molecular Evolutionary Analysis of Cancer Cell Lines. Mol. Cancer Ther. 9(2), 279–291 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salari, R. et al. (2013). Inference of Tumor Phylogenies with Improved Somatic Mutation Discovery. In: Deng, M., Jiang, R., Sun, F., Zhang, X. (eds) Research in Computational Molecular Biology. RECOMB 2013. Lecture Notes in Computer Science(), vol 7821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37195-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37195-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37194-3

  • Online ISBN: 978-3-642-37195-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics