An Evolutionary Framework for Routing Protocol Analysis in Wireless Sensor Networks

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7835)


Wireless Sensor Networks (WSNs) are widely adopted for applications ranging from surveillance to environmental monitoring. While powerful and relatively inexpensive, they are subject to behavioural faults which make them unreliable. Due to the complex interactions between network nodes, it is difficult to uncover faults in a WSN by resorting to formal techniques for verification and analysis, or to testing. This paper proposes an evolutionary framework to detect anomalous behaviour related to energy consumption in WSN routing protocols. Given a collection protocol, the framework creates candidate topologies and evaluates them through simulation on the basis of metrics measuring the radio activity on nodes. Experimental results using the standard Collection Tree Protocol show that the proposed approach is able to unveil topologies plagued by excessive energy depletion over one or more nodes, and thus could be used as an offline debugging tool to understand and correct the issues before network deployment and during the development of new protocols.


Wireless Sensor Networks Anomaly Detection Network Efficiency Routing Protocols Evolutionary Algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barrenetxea, G., Ingelrest, F., Schaefer, G., Vetterli, M.: The hitchhiker’s guide to successful wireless sensor network deployments. In: Proc. 6th ACM Conference on Embedded Network Sensor Systems, SenSys 2008, pp. 43–56. ACM (2008)Google Scholar
  2. 2.
    Bucur, D., Kwiatkowska, M.: On software verification for sensor nodes. Journal of Systems and Software 84(10), 1693–1707 (2011)CrossRefGoogle Scholar
  3. 3.
    D’Silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques for formal software verification. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 27(7), 1165–1178 (2008)CrossRefGoogle Scholar
  4. 4.
    Gandini, S., Ruzzarin, W., Sanchez, E., Squillero, G., Tonda, A.: A framework for automated detection of power-related software errors in industrial verification processes. Journal of Electronic Testing 26(6), 689–697 (2010)CrossRefGoogle Scholar
  5. 5.
    Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., Levis, P.: Collection tree protocol. In: Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems, SenSys 2009, pp. 1–14. ACM, New York (2009)CrossRefGoogle Scholar
  6. 6.
    Jurdak, R., Wang, X.R., Obst, O., Valencia, P.: Wireless Sensor Network Anomalies: Diagnosis and Detection Strategies. In: Tolk, A., Jain, L.C. (eds.) Intelligence-Based Systems Engineering. ISRL, vol. 10, ch. 12, pp. 309–325. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Langendoen, K., Baggio, A., Visser, O.: Murphy loves potatoes: experiences from a pilot sensor network deployment in precision agriculture. In: Proc. Int. Conf. on Parallel and Distributed Processing, pp. 174–181. IEEE Computer Society (2006)Google Scholar
  8. 8.
    Lee, H., Cerpa, A., Levis, P.: Improving wireless simulation through noise modeling. In: Proceedings of the 6th International Conference on Information Processing in Sensor Networks, IPSN 2007, pp. 21–30. ACM, New York (2007)Google Scholar
  9. 9.
    Levis, P., Gay, D., Handziski, V., Hauer, J.H., Greenstein, B., Turon, M., Hui, J., Klues, K., Sharp, C., Szewczyk, R., Polastre, J., Buonadonna, P., Nachman, L., Tolle, G., Culler, D., Wolisz, A.: T2: A second generation OS for embedded sensor networks. Tech. Rep. TKN-05-007, Technische Universität Berlin (2005)Google Scholar
  10. 10.
    Levis, P., Lee, N., Welsh, M., Culler, D.E.: TOSSIM: Accurate and scalable simulation of entire TinyOS applications. In: Proceedings of the ACM Conference on Embedded Networked Sensor Systems (SenSys), pp. 126–137 (2003)Google Scholar
  11. 11.
    Li, P., Regehr, J.: T-Check: bug finding for sensor networks. In: Proceedings of the 9th International Conference on Information Processing in Sensor Networks (IPSN), pp. 174–185. ACM (2010)Google Scholar
  12. 12.
    Mottola, L., Voigt, T., Österlind, F., Eriksson, J., Baresi, L., Ghezzi, C.: Anquiro: Enabling efficient static verification of sensor network software. In: Workshop on Software Engineering for Sensor Network Applications (SESENA) ICSE(2) (2010)Google Scholar
  13. 13.
    Sacco, G., Barltrop, K., Lee, C., Horvath, G., Terrile, R., Lee, S.: Application of genetic algorithm for flight system verification and validation. In: Aerospace Conference, pp. 1–7. IEEE (2009)Google Scholar
  14. 14.
    Sanchez, E., Schillaci, M., Squillero, G.: Evolutionary Optimization: the μGP toolkit, 1st edn. Springer Publishing Company, Incorporated (2011)Google Scholar
  15. 15.
    Sasnauskas, R., Landsiedel, O., Alizai, M.H., Weise, C., Kowalewski, S., Wehrle, K.: KleeNet: discovering insidious interaction bugs in wireless sensor networks before deployment. In: Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), pp. 186–196. ACM (2010)Google Scholar
  16. 16.
    Shyang, W., Lakos, C., Michalewicz, Z., Schellenberg, S.: Experiments in applying evolutionary algorithms to software verification. In: IEEE World Congress on Computational Intelligence (CEC), pp. 3531–3536. IEEE (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.INCAS3AssenThe Netherlands
  2. 2.Johann Bernoulli InstituteUniversity of GroningenGroningenThe Netherlands
  3. 3.Politecnico di TorinoTorinoItaly
  4. 4.INRA UMR 782 GMPAThiverval-GrignonFrance

Personalised recommendations