Skip to main content

Hybrid Multiobjective Artificial Bee Colony with Differential Evolution Applied to Motif Finding

  • Conference paper
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EvoBIO 2013)

Abstract

The Multiobjective Artificial Bee Colony with Differential Evolution (MO-ABC/DE) is a new hybrid multiobjective evolutionary algorithm proposed for solving optimization problems. One important optimization problem in Bioinformatics is the Motif Discovery Problem (MDP), applied to the specific task of discovering DNA patterns (motifs) with biological significance, such as DNA-protein binding sites, replication origins or transcriptional DNA sequences. In this work, we apply the MO-ABC/DE algorithm for solving the MDP using as benchmark genomic data belonging to four organisms: drosophila melanogaster, homo sapiens, mus musculus, and saccharomyces cerevisiae. To demonstrate the good performance of our algorithm we have compared its results with those obtained by four multiobjective evolutionary algorithms, and their predictions with those made by thirteen well-known biological tools. As we will see, the proposed algorithm achieves good results from both computer science and biology point of views.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Che, D., Song, Y., Rashedd, K.: MDGA: Motif discovery using a genetic algorithm. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation (GECCO 2005), pp. 447–452 (2005)

    Google Scholar 

  2. Congdon, C.B., Fizer, C.W., Smith, N.W., Gaskins, H.R., Aman, J., Nava, G.M., Mattingly, C.: Preliminary results for GAMI: A genetic algorithms approach to motif inference. In: Proceedings of the 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB 2005), pp. 97–104 (2005)

    Google Scholar 

  3. Deb, K.: Multi-objective optimization using evolutionary algorithms. John Wiley & Sons (2001)

    Google Scholar 

  4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  5. D’haeseleer, P.: What are DNA sequence motifs? Nature Biotechnology 24(4), 423–425 (2006)

    Article  Google Scholar 

  6. Fogel, G.B., et al.: Evolutionary computation for discovery of composite transcription factor binding sites. Nucleic Acids Research 36(21), 1–14 (2008)

    Article  Google Scholar 

  7. Fogel, G.B., Weekes, D.G., Varga, G., Dow, E.R., Harlow, H.B., Onyia, J.E., Su, C.: Discovery of sequence motifs related to coexpression of genes using evolutionary computation. Nucleic Acids Research 32(13), 3826–3835 (2004)

    Article  Google Scholar 

  8. González-Álvarez, D.L., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Predicting DNA motifs by using evolutionary multiobjective optimization. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews 42(6), 913–925 (2011)

    Article  Google Scholar 

  9. González-Álvarez, D.L., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Comparing multiobjective swarm intelligence metaheuristics for DNA motif discovery. Engineering Applications of Artificial Intelligence 26(1), 314–326 (2012)

    Article  Google Scholar 

  10. Grosan, C., Abraham, A.: Hybrid Evolutionary Algorithms: Methodologies, Architectures, and Reviews. In: Grosan, C., Abraham, A., Ishibuchi, H. (eds.) Hybrid Evolutionary Algorithms. SCI, vol. 75, pp. 1–17. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes University, Turkey (2005)

    Google Scholar 

  12. Kaya, M.: MOGAMOD: Multi-objective genetic algorithm for motif discovery. Expert Systems with Applications 36(2), 1039–1047 (2009)

    Article  Google Scholar 

  13. Liu, F.F.M., Tsai, J.J.P., Chen, R.M., Chen, S.N., Shih, S.H.: FMGA: finding motifs by genetic algorithm. In: Fourth IEEE Symposium on Bioinformatics and Bioengineering (BIBE 2004), pp. 459–466 (2004)

    Google Scholar 

  14. Lones, M.A., Tyrrell, A.M.: Regulatory motif discovery using a population clustering evolutionary algorithm. IEEE/ACM Transactions on Computational Biology and Bioinformatics 4(3), 403–414 (2007)

    Article  Google Scholar 

  15. Paul, T.K., Iba, H.: Identification of weak motifs in multiple biological sequences using genetic algorithm. In: Proceedings of the 2006 Conference on Genetic and Evolutionary Computation (GECCO 2006), pp. 271–278 (2006)

    Google Scholar 

  16. Rubio-Largo, A., González-Álvarez, D.L., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: MO-ABC/DE - multiobjective artificial bee colony with differential evolution for unconstrained multiobjective optimization. In: 13th IEEE International Symposium on Computational Intelligence and Informatics, pp. 157–162 (2012)

    Google Scholar 

  17. Shao, L., Chen, Y.: Bacterial foraging optimization algorithm integrating tabu search for motif discovery. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2009), pp. 415–418 (2009)

    Google Scholar 

  18. Stine, M., Dasgupta, D., Mukatira, S.: Motif discovery in upstream sequences of coordinately expressed genes. In: The 2003 Congress on Evolutionary Computation (CEC 2003), vol. 3, pp. 1596–1603 (2003)

    Google Scholar 

  19. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tompa, M., et al.: Assessing computational tools for the discovery of transcription factor binding sites. Nature Biotechnology 23(1), 137–144 (2005)

    Article  MathSciNet  Google Scholar 

  21. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evolutionary Computation 8(2), 173–195 (2000)

    Article  Google Scholar 

  22. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm. Technical report tik-report 103, Swiss Federal Institute of Technology, Zurich, Switzerland (2001)

    Google Scholar 

  23. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

González-Álvarez, D.L., Vega-Rodríguez, M.A. (2013). Hybrid Multiobjective Artificial Bee Colony with Differential Evolution Applied to Motif Finding. In: Vanneschi, L., Bush, W.S., Giacobini, M. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2013. Lecture Notes in Computer Science, vol 7833. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37189-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37189-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37188-2

  • Online ISBN: 978-3-642-37189-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics