Inferring Human Phenotype Networks from Genome-Wide Genetic Associations

  • Christian Darabos
  • Kinjal Desai
  • Richard Cowper-Sal·lari
  • Mario Giacobini
  • Britney E. Graham
  • Mathieu Lupien
  • Jason H. Moore
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7833)

Abstract

Networks are commonly used to represent and analyze large and complex systems of interacting elements. We build a human phenotype network (HPN) of over 600 physical attributes, diseases, and behavioral traits; based on more than 6,000 genetic variants (SNPs) from Genome-Wide Association Studies data. Using phenotype-to-SNP associations, and HapMap project data, we link traits based on the common patterns of human genetic variations, expanding previous studies from a gene-centric approach to that of shared risk-variants. The resulting network has a heavily right-skewed degree distribution, placing it in the scale-free region of the network topologies spectrum. Additional network metrics hint that the HPN shares properties with social networks. Using a standard community detection algorithm, we construct phenotype modules of similar traits without applying expert biological knowledge. These modules can be assimilated to the disease classes. However, we are able to classify phenotypes according to shared biology, and not arbitrary disease classes. We present a collection of documented clinical connections supported by the network. Furthermore, we highlight phenotypes modules and links that may underlie yet undiscovered genetic interactions. Despite its simplicity and current limitations the HPN shows tremendous potential to become a useful tool both in the unveiling of the diseases’ common biology, and in the elaboration of diagnosis and treatments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G.M., Cooper, N.R., Eikelenboom, P., Emmerling, M., Fiebich, B.L., Finch, C.E., Frautschy, S., Griffin, W., Hampel, H., Hull, M., Landreth, G., Lue, L.-F., Mrak, R., Mackenzie, I.R., McGeer, P.L., O’Banion, M., Pachter, J., Pasinetti, G., Plata-Salaman, C., Rogers, J., Rydel, R., Shen, Y., Streit, W., Strohmeyer, R., Tooyoma, I., Muiswinkel, F.L.V., Veerhuis, R., Walker, D., Webster, S., Wegrzyniak, B., Wenk, G., Wyss-Coray, T.: Inflammation and alzheimer’s disease. Neurobiology of Aging 21(3), 383–421 (2000)CrossRefGoogle Scholar
  2. 2.
    Albert, R.: Scale-free networks in cell biology. J. of Cell Science 118, 4947–4957 (2005)CrossRefGoogle Scholar
  3. 3.
    Barrenas, F., Chavali, S., Holme, P., Mobini, R., Benson, M.: Network properties of complex human disease genes identified through genome-wide association studies. PLoS ONE 4(11), e8090 (2009)Google Scholar
  4. 4.
    Bin, J., Bernatsky, S., Gordon, C., Boivin, J.-F., Ginzler, E., Gladman, D., Fortin, P.R., Urowitz, M., Manzi, S., Isenberg, D., Rahman, A., Petri, M., Nived, O., Sturfeldt, G., Ramsey-Goldman, R., Clarke, A.E.: Lung cancer in systemic lupus erythematosus. Lung Cancer 56(3), 303–306 (2007)CrossRefGoogle Scholar
  5. 5.
    Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008(10), P10008+ (2008)CrossRefGoogle Scholar
  6. 6.
    Falconer, D.S., Mackay, T.F.C.: Introduction to Quantitative Genetics, 4th edn. Prentice Hall (February 1996)Google Scholar
  7. 7.
    Goh, K.-I., Cusick, M.E., Valle, D., Childs, B., Vidal, M., Barabasi, A.-L.: The human disease network. Proceedings of the National Academy of Sciences 104(21), 8685–8690 (2007)CrossRefGoogle Scholar
  8. 8.
    Hindorff, L.A., Sethupathy, P., Junkins, H.A., Ramos, E.M., Mehta, J.P., Collins, F.S., Manolio, T.A.: Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. U S A 106(23), 9362–9367 (2009)CrossRefGoogle Scholar
  9. 9.
    The International HapMap Consortium: A haplotype map of the human genome. Nature 437(7063), 1299–1320 (2005)Google Scholar
  10. 10.
    Jobin, C., Sartor, R.B.: Nf-kappab signaling proteins as therapeutic targets for inflammatory bowel diseases. Inflamm. Bowel Dis. 6(3), 206–213 (2000)CrossRefGoogle Scholar
  11. 11.
    Kok, E.H., Alanne-Kinnunen, M., Isotalo, K., Luoto, T., Haikonen, S., Goebeler, S., Perola, M., Hurme, M.A., Haapasalo, H., Karhunen, P.J.: Crp gene variation affects early development of alzheimer’s disease-related plaques. J. Neuroinflammation 8, 96 (2011)CrossRefGoogle Scholar
  12. 12.
    Krum, S.A., Chang, J., Miranda-Carboni, G., Wang, C.-Y.: Novel functions for nfkappab: inhibition of bone formation. Nat. Rev. Rheumatol. 6(10), 607–611 (2010)CrossRefGoogle Scholar
  13. 13.
    Li, H., Lee, Y., Chen, J.L., Rebman, E., Li, J., Lussier, Y.A.: Complex-disease networks of trait-associated single-nucleotide polymorphisms (SNPs) unveiled by information theory. Journal of the American Medical Informatics Association: JAMIA 19(2), 295–305 (2012)CrossRefGoogle Scholar
  14. 14.
    Loscalzo, J., Barabasi, A.-L.: Systems biology and the future of medicine. Wiley Interdisciplinary Reviews: Systems Biology and Medicine 3(6), 619–627 (2011)CrossRefGoogle Scholar
  15. 15.
    McCarthy, M.I., Abecasis, G.R., Cardon, L.R., Goldstein, D.B., Little, J., Ioannidis, J.P.A., Hirschhorn, J.N.: Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat. Rev. Genet. 9(5), 356–369 (2008)CrossRefGoogle Scholar
  16. 16.
    Newman, M.: Networks: An Introduction. Oxford University Press, Inc., New York (2010)MATHGoogle Scholar
  17. 17.
    Osborne, C.K.: Steroid hormone receptors in breast cancer management. Breast Cancer Res. Treat. 51(3), 227–238 (1998)CrossRefGoogle Scholar
  18. 18.
    Roubenoff, R., Drew, H., Moyer, M., Petri, M., Whiting-O’Keefe, Q., Hellmann, D.B.: Oral cimetidine improves the accuracy and precision of creatinine clearance in lupus nephritis. Ann. Intern. Med. 113(7), 501–506 (1990)Google Scholar
  19. 19.
    Sirota, M., Dudley, J.T., Kim, J., Chiang, A.P., Morgan, A.A., Sweet-Cordero, A., Sage, J., Butte, A.J.: Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci. Transl. Med. 3(96), 96–477 (2011)CrossRefGoogle Scholar
  20. 20.
    Smith, E.P., Boyd, J., Frank, G.R., Takahashi, H., Cohen, R.M., Specker, B., Williams, T.C., Lubahn, D.B., Korach, K.S.: Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N. Engl. J. Med. 331(16), 1056–1061 (1994)CrossRefGoogle Scholar
  21. 21.
    Suthram, S., Dudley, J.T., Chiang, A.P., Chen, R., Hastie, T.J., Butte, A.J.: Network-based elucidation of human disease similarities reveals common functional modules enriched for pluripotent drug targets. PLoS Comput. Biol. 6(2), e1000662 (2010)CrossRefGoogle Scholar
  22. 22.
    Watts, D.J.: Small Worlds: The Dynamics of Networks Between Order and Randomness. Princeton University Press, Princeton (1999)Google Scholar
  23. 23.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ”small-world” networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  24. 24.
    Wu, X., Jiang, R., Zhang, M.Q., Li, S.: Network-based global inference of human disease genes. Mol. Syst. Biol. 4, 189 (2008)CrossRefGoogle Scholar
  25. 25.
    Zhang, X., Cowper-Sal lari, R., Bailey, S.D., Moore, J.H., Lupien, M.: Integrative functional genomics identifies an enhancer looping to the sox9 gene disrupted by the 17q24.3 prostate cancer risk locus. Genome Res. 22(8), 1437–1446 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christian Darabos
    • 1
  • Kinjal Desai
    • 1
  • Richard Cowper-Sal·lari
    • 1
  • Mario Giacobini
    • 2
  • Britney E. Graham
    • 1
  • Mathieu Lupien
    • 3
  • Jason H. Moore
    • 1
  1. 1.Department of GeneticsThe Geisel Medical School at Dartmouth CollegeLebanonU.S.A.
  2. 2.Computational Epidemiology Group, Department of Veterinary Sciences, and Complex Systems Unit, Molecular Biotechnology CenterUniversity of TorinoItaly
  3. 3.Ontario Cancer Institute, Princess Margaret Cancer Center-University Health Network, Ontario Institute for Cancer Research and the Department of Medical BiophysicsUniversity of TorontoTorontoCanada

Personalised recommendations