Skip to main content

Time-Point Specific Weighting Improves Coexpression Networks from Time-Course Experiments

  • Conference paper
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EvoBIO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7833))

Abstract

Integrative systems biology approaches build, evaluate, and combine data from thousands of diverse experiments. These strategies rely on methods that effectively identify and summarize gene-gene relationships within individual experiments. For gene-expression datasets, the Pearson correlation is often applied to build coexpression networks because it is both easily interpretable and quick to calculate. Here we develop and evaluate weighted Pearson correlation approaches that better summarize gene expression data into coexpression networks for synchronized cell cycle time-course experiments. These methods use experimental measurements of cell cycle synchrony to estimate appropriate weights through either sliding window or linear regression approaches. We show that these weights improve our ability to build coexpression networks capable of identifying phase-specific functional relationships between genes. We evaluate our method on diverse experiments and find that both weighted strategies outperform the traditional method. This weighted correlation approach is implemented in the Sleipnir library, an open source library used for integrative systems biology. Integrative approaches using properly weighted time-course experiments will provide a more detailed understanding of the processes studied in such experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Troyanskaya, O.G., Dolinski, K., Owen, A.B., Altman, R.B., Botstein, D.: A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proceedings of the National Academy of Sciences of the United States of America 100(14), 8348–8353 (2003)

    Article  Google Scholar 

  2. Zhang, Z., Gerstein, M.: Reconstructing genetic networks in yeast. Nature Biotechnology 21(11), 1295–1297 (2003)

    Article  Google Scholar 

  3. Lee, I., Date, S.V., Adai, A.T., Marcotte, E.M.: A probabilistic functional network of yeast genes. Science 306(5701), 1555–1558 (2004)

    Article  Google Scholar 

  4. Myers, C.L., Troyanskaya, O.G.: Context-sensitive data integration and prediction of biological networks. Bioinformatics 23(17), 2322–2330 (2007)

    Article  Google Scholar 

  5. Huttenhower, C., Haley, E.M., Hibbs, M.A., Dumeaux, V., Barrett, D.R., Coller, H.A., Troyanskaya, O.G.: Exploring the human genome with functional maps. Genome Research 19(6), 1093–1106 (2009)

    Article  Google Scholar 

  6. Hess, D.C., Myers, C.L., Huttenhower, C., Hibbs, M.A., Hayes, A.P., Paw, J., Clore, J.J., Mendoza, R.M., Luis, B.S., Nislow, C., Giaever, G., Costanzo, M., Troyanskaya, O.G., Caudy, A.A.: Computationally driven, quantitative experiments discover genes required for mitochondrial biogenesis. PLoS Genetics 5(3), e1000407 (2009)

    Article  Google Scholar 

  7. Hibbs, M.A., Myers, C.L., Huttenhower, C., Hess, D.C., Li, K., Caudy, A.A., Troyanskaya, O.G.: Directing experimental biology: a case study in mitochondrial biogenesis. PLoS Computational Biology 5(3), e1000322 (2009)

    Article  Google Scholar 

  8. Wong, A.K., Park, C.Y., Greene, C.S., Bongo, L.A., Guan, Y., Troyanskaya, O.G.: IMP: a multi-species functional genomics portal for integration, visualization and prediction of protein functions and networks. Nucleic Acids Research 40(Web Server issue), W484–W490 (2012)

    Google Scholar 

  9. IMP: Integrative multi-species prediction (October 2012), http://imp.princeton.edu/networks/data/

  10. Bar-Joseph, Z., Siegfried, Z., Brandeis, M., Brors, B., Lu, Y., Eils, R., Dynlacht, B.D., Simon, I.: Genome-wide transcriptional analysis of the human cell cycle identifies genes differentially regulated in normal and cancer cells. Proceedings of the National Academy of Sciences of the United States of America 105(3), 955–960 (2008)

    Article  Google Scholar 

  11. Cho, R.J., Huang, M., Campbell, M.J., Dong, H., Steinmetz, L., Sapinoso, L., Hampton, G., Elledge, S.J., Davis, R.W., Lockhart, D.J.: Transcriptional regulation and function during the human cell cycle. Nature Genetics 27(1), 48–54 (2001)

    Article  Google Scholar 

  12. Sadasivam, S., Duan, S., DeCaprio, J.A.: The MuvB complex sequentially recruits B-Myb and FoxM1 to promote mitotic gene expression. Genes & Development 26(5), 474–489 (2012)

    Article  Google Scholar 

  13. Whitfield, M.L., Sherlock, G., Saldanha, A.J., Murray, J.I., Ball, C.A., Alexander, K.E., Matese, J.C., Perou, C.M., Hurt, M.M., Brown, P.O., Botstein, D.: Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Molecular Biology of the Cell 13(6), 1977–2000 (2002)

    Article  Google Scholar 

  14. Grant, G.D., Gamsby, J., Martyanov, V., Brooks, L., George, L.K., Mahoney, J.M., Loros, J.J., Dunlap, J.C., Whitfield, M.L.: Live-cell monitoring of periodic gene expression in synchronous human cells identifies Forkhead genes involved in cell cycle control. Molecular Biology of the Cell 23(16), 3079–3093 (2012)

    Article  Google Scholar 

  15. Yeom, M., Pendergast, J.S., Ohmiya, Y., Yamazaki, S.: Circadian-independent cell mitosis in immortalized fibroblasts. Proceedings of the National Academy of Sciences of the United States of America 107(21), 9665–9670 (2010)

    Article  Google Scholar 

  16. Nowrousian, M., Duffield, G.E., Loros, J.J., Dunlap, J.C.: The frequency gene is required for temperature-dependent regulation of many clock-controlled genes in Neurospora crassa. Genetics 164(3), 923–933 (2003)

    Google Scholar 

  17. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell 9(12), 3273–3297 (1998)

    Google Scholar 

  18. Langmead, C.J., Yan, A.K., McClung, C.R., Donald, B.R.: Phase-independent rhythmic analysis of genome-wide expression patterns. Journal of Computational Biology: A Journal of Computational Molecular Cell Biology 10(3-4), 521–536 (2003)

    Article  Google Scholar 

  19. Johansson, D., Lindgren, P., Berglund, A.: A multivariate approach applied to microarray data for identification of genes with cell cycle-coupled transcription. Bioinformatics 19(4), 467–473 (2003)

    Article  Google Scholar 

  20. Wichert, S., Fokianos, K., Strimmer, K.: Identifying periodically expressed transcripts in microarray time series data. Bioinformatics 20(1), 5–20 (2003)

    Article  Google Scholar 

  21. Straume, M.: DNA microarray time series analysis: automated statistical assessment of circadian rhythms in gene expression patterning. Methods in Enzymology 383, 149–166 (2004)

    Article  Google Scholar 

  22. Chen, J.: Identification of significant periodic genes in microarray gene expression data. BMC Bioinformatics 16(1), 286 (2005)

    Article  Google Scholar 

  23. Fan, X., Pyne, S., Liu, J.S.: Bayesian meta-analysis for identifying periodically expressed genes in fission yeast cell cycle. The Annals of Applied Statistics 4(2), 988–1013 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Johnson, D.G., Ohtani, K., Nevins, J.R.: Autoregulatory control of E2F1 expression in response to positive and negative regulators of cell cycle progression. Genes & Development 8(13), 1514–1525 (1994)

    Article  Google Scholar 

  25. Alibés, A., Yankilevich, P., Cañada, A., Díaz-Uriarte, R.: IDconverter and IDClight: conversion and annotation of gene and protein IDs. BMC Bioinformatics 8(1), 9 (2007)

    Article  Google Scholar 

  26. Myers, C.L., Barrett, D.R., Hibbs, M.A., Huttenhower, C., Troyanskaya, O.G.: Finding function: evaluation methods for functional genomic data. BMC Genomics 7, 187 (2006)

    Article  Google Scholar 

  27. Huttenhower, C., Schroeder, M., Chikina, M.D., Troyanskaya, O.G.: The Sleipnir library for computational functional genomics. Bioinformatics 24(13), 1559–1561 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tan, J., Grant, G.D., Whitfield, M.L., Greene, C.S. (2013). Time-Point Specific Weighting Improves Coexpression Networks from Time-Course Experiments. In: Vanneschi, L., Bush, W.S., Giacobini, M. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2013. Lecture Notes in Computer Science, vol 7833. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37189-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37189-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37188-2

  • Online ISBN: 978-3-642-37189-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics