Time-Point Specific Weighting Improves Coexpression Networks from Time-Course Experiments

  • Jie Tan
  • Gavin D. Grant
  • Michael L. Whitfield
  • Casey S. Greene
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7833)

Abstract

Integrative systems biology approaches build, evaluate, and combine data from thousands of diverse experiments. These strategies rely on methods that effectively identify and summarize gene-gene relationships within individual experiments. For gene-expression datasets, the Pearson correlation is often applied to build coexpression networks because it is both easily interpretable and quick to calculate. Here we develop and evaluate weighted Pearson correlation approaches that better summarize gene expression data into coexpression networks for synchronized cell cycle time-course experiments. These methods use experimental measurements of cell cycle synchrony to estimate appropriate weights through either sliding window or linear regression approaches. We show that these weights improve our ability to build coexpression networks capable of identifying phase-specific functional relationships between genes. We evaluate our method on diverse experiments and find that both weighted strategies outperform the traditional method. This weighted correlation approach is implemented in the Sleipnir library, an open source library used for integrative systems biology. Integrative approaches using properly weighted time-course experiments will provide a more detailed understanding of the processes studied in such experiments.

Keywords

Functional Genomics Time-course Experiment Coexpression Network Weighted Pearson Correlation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Troyanskaya, O.G., Dolinski, K., Owen, A.B., Altman, R.B., Botstein, D.: A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proceedings of the National Academy of Sciences of the United States of America 100(14), 8348–8353 (2003)CrossRefGoogle Scholar
  2. 2.
    Zhang, Z., Gerstein, M.: Reconstructing genetic networks in yeast. Nature Biotechnology 21(11), 1295–1297 (2003)CrossRefGoogle Scholar
  3. 3.
    Lee, I., Date, S.V., Adai, A.T., Marcotte, E.M.: A probabilistic functional network of yeast genes. Science 306(5701), 1555–1558 (2004)CrossRefGoogle Scholar
  4. 4.
    Myers, C.L., Troyanskaya, O.G.: Context-sensitive data integration and prediction of biological networks. Bioinformatics 23(17), 2322–2330 (2007)CrossRefGoogle Scholar
  5. 5.
    Huttenhower, C., Haley, E.M., Hibbs, M.A., Dumeaux, V., Barrett, D.R., Coller, H.A., Troyanskaya, O.G.: Exploring the human genome with functional maps. Genome Research 19(6), 1093–1106 (2009)CrossRefGoogle Scholar
  6. 6.
    Hess, D.C., Myers, C.L., Huttenhower, C., Hibbs, M.A., Hayes, A.P., Paw, J., Clore, J.J., Mendoza, R.M., Luis, B.S., Nislow, C., Giaever, G., Costanzo, M., Troyanskaya, O.G., Caudy, A.A.: Computationally driven, quantitative experiments discover genes required for mitochondrial biogenesis. PLoS Genetics 5(3), e1000407 (2009)CrossRefGoogle Scholar
  7. 7.
    Hibbs, M.A., Myers, C.L., Huttenhower, C., Hess, D.C., Li, K., Caudy, A.A., Troyanskaya, O.G.: Directing experimental biology: a case study in mitochondrial biogenesis. PLoS Computational Biology 5(3), e1000322 (2009)CrossRefGoogle Scholar
  8. 8.
    Wong, A.K., Park, C.Y., Greene, C.S., Bongo, L.A., Guan, Y., Troyanskaya, O.G.: IMP: a multi-species functional genomics portal for integration, visualization and prediction of protein functions and networks. Nucleic Acids Research 40(Web Server issue), W484–W490 (2012)Google Scholar
  9. 9.
    IMP: Integrative multi-species prediction (October 2012), http://imp.princeton.edu/networks/data/
  10. 10.
    Bar-Joseph, Z., Siegfried, Z., Brandeis, M., Brors, B., Lu, Y., Eils, R., Dynlacht, B.D., Simon, I.: Genome-wide transcriptional analysis of the human cell cycle identifies genes differentially regulated in normal and cancer cells. Proceedings of the National Academy of Sciences of the United States of America 105(3), 955–960 (2008)CrossRefGoogle Scholar
  11. 11.
    Cho, R.J., Huang, M., Campbell, M.J., Dong, H., Steinmetz, L., Sapinoso, L., Hampton, G., Elledge, S.J., Davis, R.W., Lockhart, D.J.: Transcriptional regulation and function during the human cell cycle. Nature Genetics 27(1), 48–54 (2001)CrossRefGoogle Scholar
  12. 12.
    Sadasivam, S., Duan, S., DeCaprio, J.A.: The MuvB complex sequentially recruits B-Myb and FoxM1 to promote mitotic gene expression. Genes & Development 26(5), 474–489 (2012)CrossRefGoogle Scholar
  13. 13.
    Whitfield, M.L., Sherlock, G., Saldanha, A.J., Murray, J.I., Ball, C.A., Alexander, K.E., Matese, J.C., Perou, C.M., Hurt, M.M., Brown, P.O., Botstein, D.: Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Molecular Biology of the Cell 13(6), 1977–2000 (2002)CrossRefGoogle Scholar
  14. 14.
    Grant, G.D., Gamsby, J., Martyanov, V., Brooks, L., George, L.K., Mahoney, J.M., Loros, J.J., Dunlap, J.C., Whitfield, M.L.: Live-cell monitoring of periodic gene expression in synchronous human cells identifies Forkhead genes involved in cell cycle control. Molecular Biology of the Cell 23(16), 3079–3093 (2012)CrossRefGoogle Scholar
  15. 15.
    Yeom, M., Pendergast, J.S., Ohmiya, Y., Yamazaki, S.: Circadian-independent cell mitosis in immortalized fibroblasts. Proceedings of the National Academy of Sciences of the United States of America 107(21), 9665–9670 (2010)CrossRefGoogle Scholar
  16. 16.
    Nowrousian, M., Duffield, G.E., Loros, J.J., Dunlap, J.C.: The frequency gene is required for temperature-dependent regulation of many clock-controlled genes in Neurospora crassa. Genetics 164(3), 923–933 (2003)Google Scholar
  17. 17.
    Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell 9(12), 3273–3297 (1998)Google Scholar
  18. 18.
    Langmead, C.J., Yan, A.K., McClung, C.R., Donald, B.R.: Phase-independent rhythmic analysis of genome-wide expression patterns. Journal of Computational Biology: A Journal of Computational Molecular Cell Biology 10(3-4), 521–536 (2003)CrossRefGoogle Scholar
  19. 19.
    Johansson, D., Lindgren, P., Berglund, A.: A multivariate approach applied to microarray data for identification of genes with cell cycle-coupled transcription. Bioinformatics 19(4), 467–473 (2003)CrossRefGoogle Scholar
  20. 20.
    Wichert, S., Fokianos, K., Strimmer, K.: Identifying periodically expressed transcripts in microarray time series data. Bioinformatics 20(1), 5–20 (2003)CrossRefGoogle Scholar
  21. 21.
    Straume, M.: DNA microarray time series analysis: automated statistical assessment of circadian rhythms in gene expression patterning. Methods in Enzymology 383, 149–166 (2004)CrossRefGoogle Scholar
  22. 22.
    Chen, J.: Identification of significant periodic genes in microarray gene expression data. BMC Bioinformatics 16(1), 286 (2005)CrossRefGoogle Scholar
  23. 23.
    Fan, X., Pyne, S., Liu, J.S.: Bayesian meta-analysis for identifying periodically expressed genes in fission yeast cell cycle. The Annals of Applied Statistics 4(2), 988–1013 (2010)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Johnson, D.G., Ohtani, K., Nevins, J.R.: Autoregulatory control of E2F1 expression in response to positive and negative regulators of cell cycle progression. Genes & Development 8(13), 1514–1525 (1994)CrossRefGoogle Scholar
  25. 25.
    Alibés, A., Yankilevich, P., Cañada, A., Díaz-Uriarte, R.: IDconverter and IDClight: conversion and annotation of gene and protein IDs. BMC Bioinformatics 8(1), 9 (2007)CrossRefGoogle Scholar
  26. 26.
    Myers, C.L., Barrett, D.R., Hibbs, M.A., Huttenhower, C., Troyanskaya, O.G.: Finding function: evaluation methods for functional genomic data. BMC Genomics 7, 187 (2006)CrossRefGoogle Scholar
  27. 27.
    Huttenhower, C., Schroeder, M., Chikina, M.D., Troyanskaya, O.G.: The Sleipnir library for computational functional genomics. Bioinformatics 24(13), 1559–1561 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jie Tan
    • 1
  • Gavin D. Grant
    • 1
  • Michael L. Whitfield
    • 1
  • Casey S. Greene
    • 1
  1. 1.Department of GeneticsThe Geisel School of Medicine at DartmouthHanoverUSA

Personalised recommendations